Newton's laws and incline surfaces

Click For Summary
SUMMARY

The discussion focuses on solving a physics problem involving a box with an initial velocity of 5 m/s moving up a 20-degree incline. Participants clarify the need to use the correct trigonometric functions to determine the acceleration down the incline, specifically using g sin(20) for the parallel component of gravity. The final calculations suggest that the distance traveled before coming to rest is approximately 3.37 meters, assuming the correct acceleration is applied. Misinterpretations of angles and trigonometric functions were identified as common errors in the initial attempts.

PREREQUISITES
  • Understanding of Newton's laws of motion
  • Basic knowledge of trigonometric functions (sine, cosine)
  • Familiarity with kinematic equations
  • Concept of inclined planes in physics
NEXT STEPS
  • Study the derivation and application of kinematic equations for inclined planes
  • Learn about the components of gravitational force on an incline
  • Explore examples of problems involving frictionless surfaces and inclined angles
  • Review the Physics Classroom resources on vectors and inclined planes
USEFUL FOR

Students studying physics, educators teaching mechanics, and anyone interested in understanding motion on inclined surfaces.

naada
Messages
4
Reaction score
0

Homework Statement



A box is given an initial velocity of 5m/s up a smooth 20 incline surface . The distance the box travel before coming to rest is?


Homework Equations



I can't solve it correctly , I can't get the idea of this question

The Attempt at a Solution



x= ?
vi=5
v=0
a=?

F = ma
mg cos ? = a

tan-1 20 = 87.14
180 = 90 + 87.14 + ?
?= 180 -90-87.14
?=2.9

(mg cos 2.9 = ma ) /m
g cos 2.9 = a
a= 28.03

x = 25 /( 28.03 )2
x= 0.45 m

My answer is so wrong !
But i can't figure out how to solve this problem
 
Physics news on Phys.org
naada said:
A box is given an initial velocity of 5m/s up a smooth 20 incline surface .
Presumably a 20 degree incline?


F = ma
mg cos ? = a
What's the component of the weight acting down the incline?

tan-1 20 = 87.14
180 = 90 + 87.14 + ?
?= 180 -90-87.14
?=2.9
Not sure what you're doing here. I presume that the angle is given as 20 degrees.

(mg cos 2.9 = ma ) /m
g cos 2.9 = a
a= 28.03
You have the wrong angle (and trig function).


x = 25 /( 28.03 )2
x= 0.45 m
Sanity check: The acceleration due to gravity is only 9.8 m/s^2, so how can the acceleration parallel to the incline be greater than that?

Find the correct acceleration and that kinematic equation will work.

Read this to learn how to handle inclined planes: http://www.physicsclassroom.com/Class/vectors/u3l3e.cfm"
 
Last edited by a moderator:
Presumably a 20 degree incline?

the question didn't mention the word "degree" or " ْ "
it's exactly as I wrote it .
So I toke 20 as the slop

#
x=? vi=5 vf=0 a=?

F = ma
(m g cos20 = m a) / m
9.8 cos20 = a
a=9.21

x=25/(2a)
x=25/(18.42)
x=1.37 m
Which is also wrong

#
180 = 90+20+?
180 -90-20=70ْ

F= m a
(m g cos 70 = m a)/m
9.8 cos 70 = a
a=3.35

x=25/(2a)
x=25/(2*3.35)
x=3.37 m
I think this one is the right one,but not sure.

thanks for the link was so useful
 
naada said:
Presumably a 20 degree incline?

the question didn't mention the word "degree" or " ْ "
it's exactly as I wrote it .
So I toke 20 as the slop
I would take it to mean a 20 degree angle to the horizontal.

#
x=? vi=5 vf=0 a=?

F = ma
(m g cos20 = m a) / m
9.8 cos20 = a
a=9.21

x=25/(2a)
x=25/(18.42)
x=1.37 m
Which is also wrong
It's wrong because you took cos20, which is the component perpendicular to the incline. You need the parallel component.


#
180 = 90+20+?
180 -90-20=70ْ

F= m a
(m g cos 70 = m a)/m
9.8 cos 70 = a
a=3.35

x=25/(2a)
x=25/(2*3.35)
x=3.37 m
I think this one is the right one,but not sure.
This time you used the correct acceleration (which is g sin20), but you made a small error in your final calculation--probably a typo. (Redo the very last step.)

Other than that minor problem, you got it right.
 

Similar threads

Replies
24
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
23
Views
3K
Replies
46
Views
5K
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 31 ·
2
Replies
31
Views
4K