MHB Newton's method to approximate integrals?

Click For Summary
Newton's method is not commonly used for approximating definite integrals, though it raises an interesting question. Instead, methods like the Newton-Cotes formula utilize polynomials for this purpose. Various numerical integration techniques, such as Riemann sums, the trapezoid rule, and Simpson's rule, employ simple functions as proxies for the integrand. Additionally, Fourier series can simplify integration once coefficients are determined, despite requiring prior integral calculations. Numerical approximations are essential for integrals that lack elementary primitives, particularly in applications like probability and signal processing.
Poly1
Messages
32
Reaction score
0
Can we use Newton's method to approximate the value of definite integrals? (Thinking)

EDIT: Ignore if the question doesn't make sense (which it probably doesn't).
 
Last edited:
Physics news on Phys.org
I think it's a valid question.

Now, I won't say it is impossible, but I have never seen Newton's method used as a means for numeric integration.

However, there are methods called the Newton-Cotes formula which use polynomials as a way to approximate definite integrals.

I plan to discuss the derivation of these in the future.:D
 
I look forward to it! :D
 
almost all ways of computing integrals (except by anti-differentiation, that is: finding a primitive) use some kind of "simple function" to serve as a proxy for the function we're integrating.

riemann sums use constant functions
the trapezoid rule uses linear functions
simpson's rule (in its most basic form) use parabolas (quadratic functions)

all of these can been seen as "special" cases of using a polynomial instead of f(x), so if we're brave enough, we can use a taylor approximation.

something along a different tack is using a Fourier series (trigonometric approximation). once the Fourier coefficients are known (which, unfortunately, require computing some OTHER integrals first), integrating is very simple, as the integrals of the terms:

$$\int_a^b a_n \cos(nx)\ dx,\ \int_a^b b_n \sin(nx)\ dx$$

are straight-forward (there may be some "adjustment factors" to fit the period to the interval [a,b] which can result in some constant factors not shown).

all of these are important, because there are some fairly simple to write down integrals for which no primitives (in terms of other "elementary functions": that is combinations of polynomials, logs, or exponentials (if one allows the euler definition of sine and cosine this includes the trigonometric functions)) exist. the most famous of these is probably this integral:

$$\int e^{-x^2}\ dx$$

which occurs quite frequently in applications of mathematics (as a (suitably adjusted) "normal distribution" in probability, and which also is extremely important in signal processing). which means we NEED numerical approximations of integrals to solve "real problems".

it turns out, for example, that calculating the arc-length of an elliptical arc, is one such difficult problem (surprisingly enough, calculating the area under an elliptical arc is not so bad...you might suspect from this that "boundaries" of regions often tend to be more intractible than the regions themselves, and you'd be right).
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 12 ·
Replies
12
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
4K
Replies
3
Views
2K