MHB No. of real solutions in exponential equation

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Exponential
Click For Summary
The discussion centers on the equation 3^x + 4^x + 5^x = x^2, analyzing the number of real solutions. The right-hand side (RHS) grows superexponentially, while the left-hand side (LHS) is quadratic, suggesting they can intersect only finitely. A detailed examination indicates they intersect exactly once, as the LHS increases rapidly from 0 to infinity, while the RHS decreases from infinity to 0 and grows more slowly for positive x. The Intermediate Value Theorem is suggested to confirm at least one solution, with Rolle's Theorem indicating its uniqueness. Overall, the conclusion is that there is precisely one real solution to the equation.
juantheron
Messages
243
Reaction score
1
no. of real solution of the equation $3^x+4^x+5^x = x^2$
 
Mathematics news on Phys.org
Re: no. of real solution in exponential equation.

The RHS grows superexponentially whether the LHS is quadratic. So, for obvious reasons, they intersects each other at most finitely often. A more close inspection of the behaviour would lead to the fact that they do indeed intersect ones.

PS I have no formal proof of this piece of problem, unfortunately.

Balarka
.
 
Re: no. of real solution in exponential equation.

mathbalarka said:
The RHS grows superexponentially whether the LHS is quadratic. So, for obvious reasons, they intersects each other at most finitely often. A more close inspection of the behaviour would lead to the fact that they do indeed intersect ones.

PS I have no formal proof of this piece of problem, unfortunately.
That argument looks correct to me. As $x$ goes from $-\infty $ to $0$, the LHS increases from $0$ to $12$, and the RHS decreases from $\infty$ to $0$. So the graphs must cross exactly once. For $x>0$ the LHS increases (very fast!) from $12$ to $\infty$ and the RHS increases much more slowly. If you differentiate both functions I am sure you will find that the LHS increases faster than the RHS for all positive $x$.
 
Re: No. of real solution in exponential equation

Hint:
[sp]Considering the function $y=3^x+4^x+5^x-x^2$, use the Intermediate Value Theorem to show that there is at least one solution, then use Rolle's Theorem to show that it is unique.[/sp]
 
Re: No. of real solution in exponential equation

Opalg said:
I am sure you will find that the LHS increases faster than the RHS for all positive x

That is evident, as I mentioned before, since LHS grows superexponentially, i.e., $$<< 5^x$$ whereas the RHS is quadratic. I think this is sufficient to prove the fact.

PS I see eddybob just posted a rigourus argument of the fact here :D
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K