No structure in ##(d,x)## in ##\textbf{Met*}(X)## is admissible

Click For Summary
SUMMARY

The discussion centers on the exercise from "Arrows, Structures and Functors the categorical imperative" by Arbib and Manes, which challenges the existence of a structure in the category ##\textbf{Met*}(X)## that allows each projection map ##\pi_i:(X,d,x)\to (\textbf{R}_+, |x-y|,0)## to be admissible. The user expresses uncertainty about the explicit functional notation for the mapping and contemplates a proof by contradiction to demonstrate that no such structure can exist. The key takeaway is that the exercise requires showing that either ##\pi_i## fails to be a contraction or an isometry, confirming the impossibility of the proposed structure.

PREREQUISITES
  • Understanding of category theory, specifically the concepts of categories and structures.
  • Familiarity with metric spaces and the definitions of isometries and contractions.
  • Knowledge of projection maps and their properties in the context of metric spaces.
  • Experience with proof techniques, particularly proof by contradiction.
NEXT STEPS
  • Study the properties of projection maps in metric spaces, focusing on their admissibility in category theory.
  • Learn about the implications of the Axiom of Composition and Structure is Abstract in categorical contexts.
  • Explore the definitions and examples of isometries and contractions in metric spaces.
  • Investigate the concept of admissible morphisms in categories, particularly in ##\textbf{Met*}##.
USEFUL FOR

Mathematicians, category theorists, and students of advanced mathematics who are exploring the intersection of metric spaces and category theory, particularly those interested in the structure and properties of categorical objects.

elias001
Messages
389
Reaction score
30
TL;DR
I want to know how to show no structure ##(d,x)## in ##\textbf{Met*}(X)## such that each ##\pi_i:(X,d,x)\to (\textbf{R}_+, |x-y|,0)## is admissible
The following question are taken from ##\textit{Arrows, Structures and Functors the categorical imperative}## by Arbib and Manes, and from ##\textit{Algebraic Theories}## by Manes

##\color{blue}{Question}\color{blue}{/difficulties:}##

I am having a lot of difficulties doing the ##\color{green}{Exercise:}## from the end of the second quoted passage below for a few reasons. The ##\textbf{difficulties}## I have are as follows:

I don't know how to describe the mapping ##\pi_i:(X,d,x)\to (\textbf{R}_+, |x-y|,0)## written out in explicit functional elements notation. From ##X=\textbf{R}^I## with ##I## being infinite, the domain of ##\pi_i## would involved some sort of product of metrics, and ##\pi_i## is suppose to serve as some sort of projection map. So we would have ##d_1(a_1,b_1), d_2(a_2,b_2), \ldots, d_i(a_i,b_i), i\in I,## and ##\pi_jd_i(a,b)=d_j(a_j,b_j),## where each ##d_i(a_i,b_i),## is a metric in ##\textbf{Met*}(X)## for all ##i\in I,## ##d_j(a_j,b_j)## is a metric in ##\textbf{Met*}(\textbf{R}_+)## and both ##a=(a_i)_{i\in I},b=(b_i)_{i\in I},## are elements of ##X=\textbf{R}.## I am not sure if this interpretation is correct.

In that exercise question, the author asks the reader to show that there is no structure in ##(d,x)## that would make each ##\pi_i## admissible. I think I am suppose to do it by contradiction and assume such added structure exists, then either show that ##\pi_i## is either not a contraction or is not an isometry. I am not sure if this would be a feasible approach.

##\color{purple}{Background}## ##\color{purple}{Information}##

(From Manes)

##\textbf{Categories of}## ##\mathscr{K-}####\textbf{Objects with Structure.}## Let ##\mathscr{K}## be a (fixed base) category. A ##\textit{literal category,}## ##\mathscr{C,}## of ##\mathscr{K-}####\textit{objects with structure}## is defined by the following two data and two axioms:

##\mathscr{C}## assigns to each object ##K## of ##\mathscr{K}## a class ##\mathscr{C}(K)## of ##\mathscr{C-}####\textit{structures on}## ##K.## A ##\mathscr{C-}####\textit{structure}## is a pair ##(K,s)## with ##s\in \mathscr{C}(K).##

For each ordered pair ##(K,S;L,t)## of ##\mathscr{C-}\textit{structures,} \mathscr{C,}## assigns a subset ##\mathscr{C}(s,t)## of ##\mathscr{K}(K,L)## of ##\mathscr{C}-\textit{admissible } \mathscr{K-}\textit{morphisms from } (K,s) \textit{to } (L,t);## to denote that ##f:K\rightarrow L## is in ##\mathscr{C}(s,t)## we will write ##f(K,s)\rightarrow (L,t)## of ##f:s\rightarrow t## (if necessary, imposing additional decoration should more than one ##\mathscr{C}## be in the picture).

The two axioms are:

##\textit{Axiom of Composition.}## If ##f:s\rightarrow t## and ##g:t\rightarrow u## then ##f\circ g:t\rightarrow u.##

##\textit{Structure is Abstract.}## If ##f:K\rightarrow L## is an isomorphism in ##\mathscr{K}## then for all ##t\in \mathscr{C}(L)## there exists unique ##s\in \mathscr{C}(K)## such that ##f:s\rightarrow t## and ##f^{-1}:t\rightarrow s.## optimal; that is, specifically, if whenever ##(K',s')## is a ##\mathscr{C-}##structure and ##g:K\rightarrow K'## is a ##\mathscr{K-}##morphism such that (please see the following image)


##f_i\circ g## is admissible for all ##i## then ##g## is also admissible.


Sets with structure-manes.webp


(From Arbib and Manes):

A ##\textbf{category, C, of sets with structure}## is given by the following two data and two axioms:

##\textbf{C}## assigns to each set ##X## a set ##\textbf{C}(X)## of ##\textbf{C-structures on } X##. ##\textbf{C-structure,}## then, is a pair ##(X,s)## with ##s## in ##\textbf{C}(X).## For each pair of sets ##(X,Y),\textbf{C}## assigns a function

$$\textbf{C}(X)\times \textbf{C}(Y)\rightarrow\textbf{P}(Y^{X}):s,t\mapsto \textbf{C}(s,t)$$

where ##Y^{X}## is, recall, the set of functions from ##X## to ##Y## and ##\textbf{P}(Y^{X})## is the set of its subsets. We write "##f:(X,s)\rightarrow (Y,t)##" and say "##f## is ##\textbf{admissible}## in ##\textbf{C}## from ##s## to ##t##" just in case ##f## is in ##\textbf{C}(s,t).## The axioms are:

##\textbf{Admissible maps to composable:}## If ##f:(X,s)\rightarrow (Y,t)## and ##g:(Y,t)\rightarrow (Z,u)## then ##g\circ f:(X,s)\rightarrow (Z,u).##

##\textbf{Structure is abstract:}## If ##f:X\rightarrow Y## is a bijection (i.e. an isomorphism of sets) and if ##t## is in ##\textbf{C}(Y)## there exists a unique ##s## in ##\textbf{C}(X)## with ##f:(X,s)\rightarrow (Y,t)## and ##f^{-1}:(Y,t)\rightarrow (X,s).##

##\textit{Some mappings between metric spaces.}## Let ##(X,d), (Y,e)## be metric spaces. A function ##f:X\to Y## is an ##\textbf{isometry}## ##\textit{from}## ##(X,d)## ##\textit{into}## ##(Y,e)## if for all ##x_1,x_2\in X, e(fx_1,fx_2)=d(x_1,x_2),## that is, if ##f## preserves distances. An isometry is automatically one-to-one, for if ##x_1\neq x_2## then ##e(fx_1,fx_2)=d(x_1,x_2)\neq 0,## which implies ##fx_1\neq fx_2. f## is an ##\textbf{isomorphism}## ##(X,d)\to (Y,e)## if ##f## is an isometry and ##f## is onto. In this case ##f^{-1}## is also an isomorphism, since ##d(f^{-1}y_1, f^{-1}y_2)=e(ff^{-1}y_1, ff^{-1}y_2)=e(y_1,y_2).##
##f:(X,d)\to (Y,e)## is a ##\textit{Lipschitz map}## if there exists ##\lambda >0## such that ##e(fx_1,fx_2)\leq \lambda d(x_1,x_2)## for all ##x_1,x_2\in X.##

##\textit{The categories}## ##\textbf{Met1}## ##\textit{and}## ##\textbf{Met*}.## Let ##\textbf{Met1}## be the category whose objects are metric spaces ##(X,d)## ##\textit{of diameter}\leq 1## (that is, ##d(x,y)\leq 1## for all ##x,y##) and whose morphisms are contractions. Let ##\textbf{Met*}## be the category whose objects are ##\textit{metric spaces with base point}##
##(X,d,x)## (meaning ##(X,d)## is a metric space and ##x## "the base point" is an arbitrary element of ##X##) and whose morphisms ##f:(X,d,x)\to (Y,e,y)## are contractions ##f:(X,d)\to (Y,e)## such that ##fx=y.## It is clear that ##\textbf{Met*}## is a category since if ##fx=y## and ##gy=z## then ##gfx=gy=z.##

##\textit{Every}## family in ##\textbf{Met*}## has a product, although it need not be built on the cartesian product set! Given ##(X_i,d_i,x_i)## let ##X## be the subset of all ##I-##tuples ##(a_i)## with each ##a_i\in X## such that the ##I-##tuple of numbers ##d_i(a_i,x_i)## has an upper bound, and define ##d((a_i),(b_i))=\text{Sup }\{d_i(a_i,b_i)\mid i\in I\}.## Then ##x=(x_i)## is in ##X.## Since there exist, by definition of ##X,## numbers ##s## and ##t## such that ##d_i(a_i,x_i)\leq t## for all ##i## and ##d_i(b_i,x_i)\leq s## for all ##i## then $$d_i(a_i,b_i)\leq d_i(a_i,x_i)+d_i(x,b_i)=d_i(a_i,x_i)+d_i(b_i,x_i)\leq t+s$$

which proves that ##d((a_i),(b_i))## is a well -defined number. Let ##p_i:(X,d_,x)\to (X_i,d_i,x_i)## be the usual coordinate projections.


##\color{green}{Exercise:}## Consider ##(\textbf{R}_+,|x-y|,0)## in ##\textbf{Met*}.## Show that, if ##X=\textbf{R}^I## with ##I## infinite, there is no structure ##(d,x)## in ##\textbf{Met*}(X)## such that each ##\pi_i:(X,d,x)\to (\textbf{R}_+, |x-y|,0)## is admissible.




Thank you in advance.
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
910
  • · Replies 11 ·
Replies
11
Views
2K
Replies
1
Views
2K
Replies
9
Views
3K
  • · Replies 100 ·
4
Replies
100
Views
12K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 10 ·
Replies
10
Views
13K
  • · Replies 175 ·
6
Replies
175
Views
26K
  • · Replies 105 ·
4
Replies
105
Views
14K
  • · Replies 16 ·
Replies
16
Views
7K