Challenge Math Challenge - September 2021

Click For Summary
The September 2021 Math Challenge covers a range of advanced topics including the Gamma function, combinatorics, stochastic processes, and topological groups. Key problems discussed include the properties of a function defined on positive reals leading to the Gamma function, and the relationship between independent random variables and their probabilities. Solutions were provided for various mathematical proofs, including those related to semisimple modules and the continuity of group operations in topological groups. Participants engaged in clarifying definitions and discussing the nuances of mathematical notation, particularly regarding logarithmic functions. The thread showcases collaborative problem-solving and deep mathematical exploration.
  • #91
MathematicalPhysicist said:
Is there a prize for the highest grades?
Well, we would have to ask @Greg Bernhardt. Maybe we could create a badge for it.
MathematicalPhysicist said:
Otherwise I wouldn't care if I got graded or not.
I have written a TeX-file and created a pdf listing all of my problems and solutions up to the end of the year. It has 530 pages. Additionally, we have had many problems from other members. This means: the counting has to be done by somebody else! I suggest an Excel sheet. :cool:
 
  • Wow
Likes Not anonymous
Physics news on Phys.org
  • #92
fresh_42 said:
15. For a partition ##\pi## of ##N := \{1, 2, ..., 9\}##, let ##\pi(x)## be the number of elements in the part containing ##x##. Prove that for any two partitions ##\pi_1## and ##\pi_2##, there are two distinct numbers ##x## and ##y## in ##N## such that ##\pi_j(x) = \pi_j(y)## for ##j=1,2##.

Claim 1: Suppose a partition ##\pi_1## of ##N = \{1,2,...,9\}## has 4 distinct numbers, say ##a_1, a_2, a_3, a_4##, such that ##\pi_1(a_1) = \pi_1(a_2) = \pi_1(a_3) = \pi_1(a_4)##. Then there cannot be another partition ##\pi_2## of ##N## such that ##\pi_1(x) = \pi_1(y)## but ##\pi_2(x) \neq \pi_2(y)## for all distinct ##x, y \in N##. In other words, for any other partition ##\pi_2## of ##N##, we can find distinct ##x, y \in N## such that ##\pi_j(x) = \pi_j(y)## for ##j=1,2##

Proof by contradiction: Suppose there exists a partition ##\pi_2## of the form claimed to not exist above. Then we must have ##\pi_2(a_i) \neq \pi_2(a_j)## for all ##i, j \in \{1,2,3,4\}## with ##i \neq j##. Hence ##\pi_2(a_1), \pi_2(a_2), \pi_2(a_3), \pi_2(a_4)## must all be distinct, i.e. each of ##a_1, a_2, a_3, a_4## must belong to a different part in ##\pi_2## and this implies that ##\pi_2## has at least 4 parts of distinct cardinalities. Thus, the number of numbers in ##\pi_2## must be at least ##1+2+3+4 = 10##, but this contradicts the fact that ##\pi_2## is a partition of ##N## and hence must have only 9 distinct numbers. This proves that any other partition of ##\pi_2## of ##N## must be such that there will exist at least 2 distinct numbers ##x, y \in \{a_1, a_2, a_3, a_4\}## such that ##\pi_2(x) = \pi_2(y)##. And since by definition of ##a_i##'s, ##\pi_1(x) = \pi_1(y)##, we have found ##x,y## such that ##\pi(x) = \pi(y)## in both ##\pi_1## and ##\pi_2##.


Now consider the following cases for ##\pi_1##.

Case 1: ##\pi_1## has at least 1 part with a cardinality of 4 or more (i.e. the part is a subset of ##N## with at least 4 elements) or has at least 2 parts with the same cardinality and these equal-sized parts have 2 or more elements.

In this case, it is easy to see that there are at least 4 distinct numbers in ##N##, say ##a_1, a_2, a_3, a_4##, such that ##\pi_1(a_1) = \pi_1(a_2) = \pi_1(a_3) = \pi_1(a_4)##. We simply take any 4 numbers from the largest cardinality part in ##\pi_1## as that part is stated to have 4 or more elements. This ##\pi_1## clearly satisfies the condition of claim 1.

Case 2: All parts in ##\pi_1## have a cardinality of 3 or less and at most one part in ##\pi_1## can have a cardinality of 2 or 3.

In this case, since at most one part can have a cardinality greater than 1 and the maximum allowed cardinality of a part is 3, ##\pi_1## must have at least 4 parts whose cardinality is 1 (single element parts). This is because the maximum number of elements contained in the parts of size more than one is ##2+3=5## (one part of size 2, one part of size 3) and the remaining ##9-5=4## numbers must be covered by single-element parts. Here again, ##\pi_1## clearly satisfies the condition of claim 1.

Cases (1) and (2) cover all possible ways to form a partition ##\pi_1## of ##N##. Since in both cases ##\pi_1## meets the condition stated in claim 1, it follows that it is not possible to have another partition ##\pi_2## of ##N## such that ##\pi_1(x) \neq \pi_2(y)## for all distinct ##x, y \in N##. In other words, for any other partition ##\pi_2## of ##N##, we can find distinct ##x, y \in N## such that ##\pi(x) = \pi(y)## in both ##\pi_1## and ##\pi_2##. Hence proved.
 
  • Like
Likes fresh_42
  • #93
The well known Maschke's theorem for Problem 4 :)
 
  • #94
nuuskur said:
The well known Maschke's theorem for Problem 4 :)
But Maschke is easy enough to prove, fulfills the requirement to learn something, and last but not least doesn't provide a counterexample for ##\operatorname{char}\mathbb{F}\,\mid\,|G| .##
 
  • #95
IIRc the result is the group algebra is semisimple if and only if \mathrm{char}F \not\mid |G|.
 
  • #96
nuuskur said:
IIRc the result is the group algebra is semisimple if and only if \mathrm{char}F \not\mid |G|.
Sure. Otherwise, there wouldn't be a counterexample.
 
  • #97
It's funny, number 3 is just a continuous version of number 2 (if your random variables take discrete values with probabilities that can be expressed as integer ratios as each other, then #3 turns into #2 I think) but somehow, #3 seemed obviously true to me and #2 seemed like a crazy result when I first read it.Anyway, here's a proof for #3.

Edit: ahh my dog posted this when I started typing. I'll remove this when I finish writing the proof.

It suffices to show for ##r>1##, that ##P(r-1 < |X-Y| \leq r) \leq 2P(|X-Y| \leq 1)##, since then
$$P(|X-Y| \leq r) = P(| X-Y| \leq 1) + \sum_{k=2}^r P(r-1 < |X-Y| \leq r) \leq P(| X-Y| \leq 1) + 2(r-1)P(| X-Y| \leq 1).$$
 
  • #98
Office_Shredder said:
It's funny, number 3 is just a continuous version of number 2 (if your random variables take discrete values with probabilities that can be expressed as integer ratios as each other, then #3 turns into #2 I think) but somehow, #3 seemed obviously true to me and #2 seemed like a crazy result when I first read it.Anyway, here's a proof for #3.

Edit: ahh my dog posted this when I started typing. I'll remove this when I finish writing the proof.

It suffices to show for ##r>1##, that ##P(r-1 < |X-Y| \leq r) \leq 2P(|X-Y| \leq 1)##, since then
$$P(|X-Y| \leq r) = P(| X-Y| \leq 1) + \sum_{k=2}^r P(r-1 < |X-Y| \leq r) \leq P(| X-Y| \leq 1) + 2(r-1)P(| X-Y| \leq 1).$$
Yes, and it's a bit short. I post my solution which is a bit more detailed.

Fix an integer ##m,## and let ##S:=(x_1,\ldots,x_m)## be a random sequence of ##m## elements, where each ##x_i## is chosen, randomly and independently, according to the distribution of ##X.## By the previous statement (problem #2)
$$
|S_r| <(2r-1)|S_1|.
$$
Therefore, the expectation of ##|S_r|## is smaller than that of ##(2r-1)|S_1|.## However, by the linearity of expectation it follows that the expectation of ##|S_b|## is precisely ##m+m(m-1)p_b## for every ##b>0.## Thus
$$
m+m(m-1)p_r< (2r-1)(m+(m-1)p_1),
$$
implying that for every integer ##m,##
$$
p_r< (2r-1)p_1+\dfrac{2r-2}{m-1} \stackrel{m\to \infty }{\longrightarrow } (2r-1)p_1
$$

It can be proven that even the strict inequality
$$\operatorname{prob}\left(|X-Y|\leq 2\right) < 3\cdot \operatorname{prob}\left(|X-Y|\leq 1\right)$$
holds, in which case we speak of the 1-2-3 theorem.
 
  • #99
Problem #8:

We have

\begin{align*}
P \left( \frac{1}{n} \sum_{k=1}^n X_k \geq a \right) & = P \left( \sum_{k=1}^n X_k \geq na \right)
\nonumber \\
& = P \left( e^{t \sum_{k=1}^n X_k} \geq e^{tna} \right)
\nonumber \\
& \leq e^{- tna} E (e^{t \sum_{k=1}^n X_k}) \qquad \qquad (\text{Chernoff bound})
\nonumber \\
& = e^{- tna} \prod_{k=1}^n E (e^{t X_k}) \qquad (\text{independent random variables}) \quad (*)
\end{align*}

Let ##E(X_k) = 0##, ##E(X_k^2) = \sigma_k^2 \leq \sigma^2## and that ##| X_k | \leq B##. We have for ##i > 2## that ##E (X_k^i) = E (X_k^{i-2} X_k^2) \leq B^{i-2} \sigma_k^2##, so that

\begin{align*}
R_k & = \sum_{i=2}^\infty \frac{t^{i-2} E(X_k^i)}{i! \sigma_k^2} \leq \sum_{i=2}^\infty \frac{t^{i-2} B^{i-2} \sigma_k^2}{i! \sigma_k^2}
\nonumber \\
& = \frac{1}{(t B)^2} \sum_{i=2}^\infty \frac{t^i B^i}{i!}
\nonumber \\
& = \frac{e^{tB} - 1 - tB}{(t B)^2}
\end{align*}

Then

\begin{align*}
E (e^{t X_k}) & = E \left( 1 + t X_k + \sum_{i=2}^\infty \frac{t^i X_k^i}{i!} \right)
\nonumber \\
& = 1 + t^2 \sigma_k^2 R_k
\nonumber \\
& \leq e^{t^2 \sigma_k^2 R_k}
\nonumber \\
& = \exp \left\{ t^2 \sigma_k^2 \frac{e^{tB} - 1 - tB}{(t B)^2} \right\}
\end{align*}

Using this in ##(*)##

\begin{align*}
P \left( \frac{1}{n} \sum_{k=1}^n X_k \geq a \right) & \leq e^{- tna} \prod_{k=1}^n \exp \left\{ t^2 \sigma_k^2 \frac{e^{tB} - 1 - tB}{(t B)^2} \right\}
\nonumber \\
& = e^{- tna} \exp \left\{ n t^2 \tilde{\sigma}^2 \frac{e^{tB} - 1 - tB}{(tb)^2}
\right\} \quad (**)
\end{align*}

(where we have defined ##\tilde{\sigma}^2 = \frac{1}{n} \sum_{k=1}^n \sigma_k^2 \leq \sigma^2##). We minimise the RHS of ##(**)## with respect to ##t##:

\begin{align*}
& \frac{d}{dt} \exp \left\{ n t^2 \tilde{\sigma}^2 \frac{e^{tB} - 1 - tB}{(tB)^2} - tna \right\}
\nonumber \\
& = \exp \left\{ n t^2 \tilde{\sigma}^2 \frac{e^{tB} - 1 - tB}{(tb)^2} - tna \right\} n (\tilde{\sigma}^2 \left( \frac{B e^{tB} - B}{B^2} \right) - a) = 0
\end{align*}

We have a tighter bound when ##t = \frac{1}{B} \log \left( \frac{aB}{\tilde{\sigma}^2} + 1 \right)##. Using this in ##(**)##:

\begin{align*}
P \left( \frac{1}{n} \sum_{k=1}^n X_k \geq a \right) & \leq \exp \left\{ n \tilde{\sigma}^2 \frac{ (\frac{aB}{\tilde{\sigma}^2} + 1) - 1 - \log \left( \frac{aB}{\tilde{\sigma}^2} + 1 \right)}{B^2} - \frac{na}{B} \log \left( \frac{aB}{\tilde{\sigma}^2} + 1 \right) \right\}
\nonumber \\
& = \exp \left\{ \frac{n \tilde{\sigma}^2}{B^2} \left[ \frac{aB}{\tilde{\sigma}^2} - \log \left( \frac{aB}{\tilde{\sigma}^2} + 1 \right) - \frac{aB}{\tilde{\sigma}^2} \log \left( \frac{aB}{\tilde{\sigma}^2} + 1 \right) \right] \right\}
\nonumber \\
& = \exp \left\{ - \frac{n \tilde{\sigma}^2}{B^2} f \left( \frac{aB}{\tilde{\sigma}^2} \right) \right\}
\end{align*}

where ##f(u) = (1+ u) \log (1+ u) - u \geq 0## for ##u \geq 0## (as ##f(0) = 0## and ##f'(u) = \log (1 + u) \geq 0##). We can use the inequality ##u - (1+u) \log (1+ u) \leq - \dfrac{3u^2}{2(u + 3)}## (##u > -1##), corresponding to problem #7, to obtain

\begin{align*}
P \left( \frac{1}{n} \sum_{k=1}^n X_k \geq a \right) & \leq \exp \left\{ - \frac{a^2}{\dfrac{2 \tilde{\sigma}^2}{n} + \dfrac{2Ba}{3n}}
\right\}
\nonumber \\
& \leq \exp \left\{ - \frac{a^2}{\dfrac{2 \sigma^2}{n} + \dfrac{2Ba}{3n}} \right\} \qquad (\sigma^2 \geq \tilde{\sigma}^2)
\end{align*}

Put

\begin{align*}
a = \sqrt{ \frac{2 \sigma^2 T}{n}} + \frac{2BT}{3n}
\end{align*}

then

\begin{align*}
a^2 = \frac{2 \sigma^2 T}{n} + 2 \sqrt{ \frac{2 \sigma^2}{n}} \frac{2B}{3n} T^{3/2} + \left( \frac{2B}{3n} \right)^2 T^2
\end{align*}

and

\begin{align*}
\frac{2 \sigma^2}{n} + \frac{2B}{3n} a = \frac{2 \sigma^2}{n} + \sqrt{ \frac{2 \sigma^2}{n}} \frac{2B}{3n} \sqrt{T} + \left( \frac{2B}{3n} \right)^2 T
\end{align*}

so that

\begin{align*}
- \frac{a^2}{\frac{2 \sigma^2}{n} + \frac{2B}{3n} a} \leq - \frac{a^2}{\frac{2 \sigma^2}{n} + \sqrt{ \frac{2 \sigma^2}{n}} \frac{2B}{3n} \sqrt{T} + \frac{2B}{3n} a} = - T
\end{align*}

So finally

\begin{align*}
P \left( \frac{1}{n} \sum_{k=1}^n X_k \geq \sqrt{ \frac{2 \sigma^2 T}{n}} + \frac{2BT}{3n} \right) \leq e^{-T} .
\end{align*}

 
Last edited:
  • Like
Likes fresh_42
  • #100
julian said:
Problem #8:

We have

\begin{align*}
P \left( \frac{1}{n} \sum_{k=1}^n X_k \geq a \right) & = P \left( \sum_{k=1}^n X_k \geq na \right)
\nonumber \\
& = P \left( e^{t \sum_{k=1}^n X_k} \geq e^{tna} \right)
\nonumber \\
& \leq e^{- tna} E (e^{t \sum_{k=1}^n X_k}) \qquad \qquad (\text{Chernoff bound})
\nonumber \\
& = e^{- tna} \prod_{k=1}^n E (e^{t X_k}) \qquad (\text{independent random variables}) \quad (*)
\end{align*}

Let ##E(X_k) = 0##, ##E(X_k^2) = \sigma_k^2 \leq \sigma^2## and that ##| X_k | \leq B##. We have for ##i > 2## that ##E (X_k^i) = E (X_k^{i-2} X_k^2) \leq B^{i-2} \sigma_k^2##, so that

\begin{align*}
R_k & = \sum_{i=2}^\infty \frac{t^{i-2} E(X_k^i)}{i! \sigma_k^2} \leq \sum_{i=2}^\infty \frac{t^{i-2} B^{i-2} \sigma_k^2}{i! \sigma_k^2}
\nonumber \\
& = \frac{1}{(t B)^2} \sum_{i=2}^\infty \frac{t^i B^i}{i!}
\nonumber \\
& = \frac{e^{tB} - 1 - tB}{(t B)^2}
\end{align*}

Then

\begin{align*}
E (e^{t X_k}) & = E \left( 1 + t X_k + \sum_{i=2}^\infty \frac{t^i X_k^i}{i!} \right)
\nonumber \\
& = 1 + t^2 \sigma_k^2 R_k
\nonumber \\
& \leq e^{t^2 \sigma_k^2 R_k}
\nonumber \\
& = \exp \left\{ t^2 \sigma_k^2 \frac{e^{tB} - 1 - tB}{(t B)^2} \right\}
\end{align*}

Using this in ##(*)##

\begin{align*}
P \left( \frac{1}{n} \sum_{k=1}^n X_k \geq a \right) & \leq e^{- tna} \prod_{k=1}^n \exp \left\{ t^2 \sigma_k^2 \frac{e^{tB} - 1 - tB}{(t B)^2} \right\}
\nonumber \\
& = e^{- tna} \exp \left\{ n t^2 \tilde{\sigma}^2 \frac{e^{tB} - 1 - tB}{(tb)^2}
\right\} \quad (**)
\end{align*}

(where we have defined ##\tilde{\sigma}^2 = \frac{1}{n} \sum_{k=1}^n \sigma_k^2 \leq \sigma^2##). We minimise the RHS of ##(**)## with respect to ##t##:

\begin{align*}
& \frac{d}{dt} \exp \left\{ n t^2 \tilde{\sigma}^2 \frac{e^{tB} - 1 - tB}{(tB)^2} - tna \right\}
\nonumber \\
& = \exp \left\{ n t^2 \tilde{\sigma}^2 \frac{e^{tB} - 1 - tB}{(tb)^2} - tna \right\} n (\tilde{\sigma}^2 \left( \frac{B e^{tB} - B}{B^2} \right) - a) = 0
\end{align*}

We have a tighter bound when ##t = \frac{1}{B} \log \left( \frac{aB}{\tilde{\sigma}^2} + 1 \right)##. Using this in ##(**)##:

\begin{align*}
P \left( \frac{1}{n} \sum_{k=1}^n X_k \geq a \right) & \leq \exp \left\{ n \tilde{\sigma}^2 \frac{ (\frac{aB}{\tilde{\sigma}^2} + 1) - 1 - \log \left( \frac{aB}{\tilde{\sigma}^2} + 1 \right)}{B^2} - \frac{na}{B} \log \left( \frac{aB}{\tilde{\sigma}^2} + 1 \right) \right\}
\nonumber \\
& = \exp \left\{ \frac{n \tilde{\sigma}^2}{B^2} \left[ \frac{aB}{\tilde{\sigma}^2} - \log \left( \frac{aB}{\tilde{\sigma}^2} + 1 \right) - \frac{aB}{\tilde{\sigma}^2} \log \left( \frac{aB}{\tilde{\sigma}^2} + 1 \right) \right] \right\}
\nonumber \\
& = \exp \left\{ - \frac{n \tilde{\sigma}^2}{B^2} f \left( \frac{aB}{\tilde{\sigma}^2} \right) \right\}
\end{align*}

where ##f(u) = (1+ u) \log (1+ u) - u \geq 0## for ##u \geq 0## (as ##f(0) = 0## and ##f'(u) = \log (1 + u) \geq 0##). We can use the inequality ##u - (1+u) \log (1+ u) \leq - \dfrac{3u^2}{2(u + 3)}## (##u > -1##), corresponding to problem #7, to obtain

\begin{align*}
P \left( \frac{1}{n} \sum_{k=1}^n X_k \geq a \right) & \leq \exp \left\{ - \frac{a^2}{\dfrac{2 \tilde{\sigma}^2}{n} + \dfrac{2Ba}{3n}}
\right\}
\nonumber \\
& \leq \exp \left\{ - \frac{a^2}{\dfrac{2 \sigma^2}{n} + \dfrac{2Ba}{3n}} \right\} \qquad (\sigma^2 \geq \tilde{\sigma}^2)
\end{align*}

Put

\begin{align*}
a = \sqrt{ \frac{2 \sigma^2 T}{n}} + \frac{2BT}{3n}
\end{align*}

then

\begin{align*}
a^2 = \frac{2 \sigma^2 T}{n} + 2 \sqrt{ \frac{2 \sigma^2}{n}} \frac{2B}{3n} T^{3/2} + \left( \frac{2B}{3n} \right)^2 T^2
\end{align*}

and

\begin{align*}
\frac{2 \sigma^2}{n} + \frac{2B}{3n} a = \frac{2 \sigma^2}{n} + \sqrt{ \frac{2 \sigma^2}{n}} \frac{2B}{3n} \sqrt{T} + \left( \frac{2B}{3n} \right)^2 T
\end{align*}

so that

\begin{align*}
- \frac{a^2}{\frac{2 \sigma^2}{n} + \frac{2B}{3n} a} \leq - \frac{a^2}{\frac{2 \sigma^2}{n} + \sqrt{ \frac{2 \sigma^2}{n}} \frac{2B}{3n} \sqrt{T} + \frac{2B}{3n} a} = - T
\end{align*}

So finally

\begin{align*}
P \left( \frac{1}{n} \sum_{k=1}^n X_k \geq \sqrt{ \frac{2 \sigma^2 T}{n}} + \frac{2BT}{3n} \right) \leq e^{-T} .
\end{align*}

Very good!

I knew the Chernoff bound as Markov inequality ...

The Markov inequality says that for a monotone increasing function ##f: \mathbb{R}\longrightarrow [0,\infty )## and a constant ##a\in \mathbb{R}##
$$
f(a)\cdot P(X\geq a) \leq E(f(X))
$$
and in particular for $f(a)>0$
$$
P(X\geq a) \leq \dfrac{E(f(X))}{f(a)}.
$$

... but I also thought nobody would solve this one. The name of the inequality in the statement (#8) is Bernstein inequality.
 
Last edited:
  • #101
It helped that I solved problem #7 first. I thought problem #7 was a bit easy, but now I realize it was setting you up to solve problem #8.
 
Last edited:
  • Like
Likes fresh_42

Similar threads

  • · Replies 61 ·
3
Replies
61
Views
10K
  • · Replies 114 ·
4
Replies
114
Views
11K
  • · Replies 67 ·
3
Replies
67
Views
11K
  • · Replies 61 ·
3
Replies
61
Views
11K
  • · Replies 42 ·
2
Replies
42
Views
10K
  • · Replies 86 ·
3
Replies
86
Views
13K
  • · Replies 33 ·
2
Replies
33
Views
9K
  • · Replies 93 ·
4
Replies
93
Views
15K
  • · Replies 61 ·
3
Replies
61
Views
13K
  • · Replies 102 ·
4
Replies
102
Views
11K