(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

solve for y(x).

[tex]y"'-6y"+11y'-6=e^{4x} [/tex]

2. Relevant equations

Wronskian determinant. Method of variations.

3. The attempt at a solution

Supposing that [u', v', w'] are the solutions, wronskian det=W is [tex]10e^{6x} [/tex]

By use of [tex] x_k=\frac{det(M_{k})}{det(x)}[/tex], I got [tex]u'=\frac{1}{4}e^{8x},v'=\frac{-1}{9}e^{9x}, w'=\frac{-1}{7}e^{7x}[/tex]. Integration gives [tex]y=\frac{1}{10}e^{2x}-\frac{1}{30}e^{3x}-\frac{e^{x}}{10}[/tex].

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Nonhomogeneous linear differential equation

**Physics Forums | Science Articles, Homework Help, Discussion**