1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Nonhomogenous LODE (Method of Variation of Parameters)

  1. Apr 20, 2006 #1
    Nonhomogenous LODE (Higher Order) - Method of Variation of Parameters

    [tex] x^3y''' + x^2y'' - 2xy' + 2y = x^3log(x) [/tex]

    [tex] y(1) = \frac{10}{32} [/tex]

    [tex] y'(1) = -\frac{24}{32} [/tex]

    [tex] y''(1) = -\frac{11}{16} [/tex]


    I know that [tex] \inline y = y_h + y_p [/tex] and that I probably should use the method of variation of parameters, so:


    ----------------
    [tex] y_h [/tex]

    Substituting [tex] \inline m^n [/tex] for y and dividing by [tex] \inline x^m [/tex] I got:

    [tex] m(m-1)(m-2) + m(m-1) - 2m + 2 = 0 [/tex]

    [tex] (m-1)[m^2-2m+m-2] = 0 [/tex]

    [tex] (m-1)(m-2)(m+1) = 0 [/tex]

    [tex] m = \pm1, 2 [/tex]

    [tex] y_h = ax + bx^{-1} + cx^2 [/tex]


    ----------------
    [tex] y_p [/tex]

    So, taking [tex] \inline y_1 = x, y_2 = \frac{1}{x}, y_3 = x^2 [/tex]

    [tex] W = \begin{array}{|ccc|} x & \frac{1}{x} & x^2 \\ 1 & -\frac{1}{x^2} & 2x \\ 0 & \frac{2}{x^3} & 2 \end{array} [/tex]

    [tex] W = -\frac{6}{x} [/tex]

    [tex] W_1 = \begin{array}{|ccc|} 0 & \frac{1}{x} & x^2 \\ 0 & -\frac{1}{x^2} & 2x \\ 1 & \frac{2}{x^3} & 2 \end{array} [/tex]

    [tex] W_1 = 3 [/tex]

    [tex] W_2 = \begin{array}{|ccc|} x & 0 & x^2 \\ 1 & 0 & 2x \\ 0 & 1 & 2 \end{array} [/tex]

    [tex] W_2 = -x^2 [/tex]

    [tex] W_3 = \begin{array}{|ccc|} x & \frac{1}{x} & 0 \\ 1 & -\frac{1}{x^2} & 0 \\ 0 & \frac{2}{x^3} & 1 \end{array} [/tex]

    [tex] W_3 = -\frac{2}{x} [/tex]

    Therefore:

    [tex] y_p = x\int -\frac{x}{2} x^3 \lnx dx + \frac{1}{x}\int \frac{x^3}{6} x^3 \lnx dx + x^2\int -\frac{x^3}{3} \lnx dx [/tex]

    Which, er, is....

    [tex] y_p = x(-\frac{1}{10}x^5logx + \frac{1}{50}x^5) + \frac{1}{x}(\frac{1}{42}x^7logx - \frac{1}{294}x^7) + x^2(\frac{1}{12}x^4logx

    - \frac{1}{48}x^4) [/tex]

    Making it..

    [tex] y_p = -\frac{1}{10}x^6logx + \frac{1}{50}x^6 + \frac{1}{42}x^6logx - \frac{1}{294}x^6 + \frac{1}{12}x^6logx - \frac{1}{48}x^6

    [/tex]

    So..

    [tex] y_p = -\frac{1}{140}x^6logx - \frac{83}{19600}x^6 [/tex]


    --------------------------
    [tex] y = y_h + y_p [/tex]

    Putting the two together..

    [tex] y = ax + bx^{-1} + cx^2 - \frac{1}{140}x^6logx - \frac{83}{19600}x^6 [/tex]

    [tex] y' = a - bx^{-2} + 2cx - \frac{3}{70}x^5logx + x^5 - \frac{179}{9800}x^5 [/tex]

    [tex] y'' = 2bx^{-3} + 2c - \frac{3}{14}x^4logx x^4 + 5x^4 - \frac{19}{392}x^4 [/tex]

    Putting in the initial values at y(1)..

    [tex] A = y(1) = a + b + c - \frac{83}{19600} = \frac{10}{32} [/tex]

    [tex] B = y'(1) = a - b + 2c - \frac{179}{9800} = -\frac{24}{32} [/tex]

    [tex] C = y''(1) = 2b + 2c - \frac{19}{392} = -\frac{11}{16} [/tex]

    And solving for a, b, c...

    [tex] A = y(1) = a + b + c = \frac{388}{1225} [/tex]

    [tex] B = y'(1) = a - b + 2c = -\frac{7171}{9800} [/tex]

    [tex] C = y''(1) = 2b + 2c = -\frac{501}{784} [/tex]

    A - B = D

    [tex] 2b - c = 1\frac{387}{9800} [/tex]

    C - D

    [tex] 3c = -\frac{501}{784} - 1\frac{387}{9800} [/tex]

    [tex] c = -\frac{7849}{58800} [/tex]

    And it is starting to look quite silly.. but carrying on to find b, a and putting them into the original equation gets:

    [tex] y = -\frac{109}{39200}x + \frac{53273}{117600}x^{-1} - \frac{7849}{58800}x^2 - \frac{1}{140}x^6logx - \frac{83}{19600}x^6 [/tex]

    Which is frankly, quite ridiculous. And unsurprisingly, it turns out to be wrong. So.



    -----------
    Question 1:

    What went wrong?!


    -----------
    Question 2:

    I am having a lot of trouble finding roots (factorizing).. right now I basically do it by trial and error and for me it takes an

    inordinate amount of time.. Is there a way to do this quickly?
     
    Last edited: Apr 20, 2006
  2. jcsd
  3. Apr 22, 2006 #2
    I've also tried checking some of the calculations using Matlab and they seem to be correct.. I get the feeling that it's not the calculation but the method?

    Also, I've managed to find info on factorizing.. I found out there was this thing called the Factor Theorem and Long Division!
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Nonhomogenous LODE (Method of Variation of Parameters)
Loading...