1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Nonhomogenous LODE (Method of Variation of Parameters)

  1. Apr 20, 2006 #1
    Nonhomogenous LODE (Higher Order) - Method of Variation of Parameters

    [tex] x^3y''' + x^2y'' - 2xy' + 2y = x^3log(x) [/tex]

    [tex] y(1) = \frac{10}{32} [/tex]

    [tex] y'(1) = -\frac{24}{32} [/tex]

    [tex] y''(1) = -\frac{11}{16} [/tex]


    I know that [tex] \inline y = y_h + y_p [/tex] and that I probably should use the method of variation of parameters, so:


    ----------------
    [tex] y_h [/tex]

    Substituting [tex] \inline m^n [/tex] for y and dividing by [tex] \inline x^m [/tex] I got:

    [tex] m(m-1)(m-2) + m(m-1) - 2m + 2 = 0 [/tex]

    [tex] (m-1)[m^2-2m+m-2] = 0 [/tex]

    [tex] (m-1)(m-2)(m+1) = 0 [/tex]

    [tex] m = \pm1, 2 [/tex]

    [tex] y_h = ax + bx^{-1} + cx^2 [/tex]


    ----------------
    [tex] y_p [/tex]

    So, taking [tex] \inline y_1 = x, y_2 = \frac{1}{x}, y_3 = x^2 [/tex]

    [tex] W = \begin{array}{|ccc|} x & \frac{1}{x} & x^2 \\ 1 & -\frac{1}{x^2} & 2x \\ 0 & \frac{2}{x^3} & 2 \end{array} [/tex]

    [tex] W = -\frac{6}{x} [/tex]

    [tex] W_1 = \begin{array}{|ccc|} 0 & \frac{1}{x} & x^2 \\ 0 & -\frac{1}{x^2} & 2x \\ 1 & \frac{2}{x^3} & 2 \end{array} [/tex]

    [tex] W_1 = 3 [/tex]

    [tex] W_2 = \begin{array}{|ccc|} x & 0 & x^2 \\ 1 & 0 & 2x \\ 0 & 1 & 2 \end{array} [/tex]

    [tex] W_2 = -x^2 [/tex]

    [tex] W_3 = \begin{array}{|ccc|} x & \frac{1}{x} & 0 \\ 1 & -\frac{1}{x^2} & 0 \\ 0 & \frac{2}{x^3} & 1 \end{array} [/tex]

    [tex] W_3 = -\frac{2}{x} [/tex]

    Therefore:

    [tex] y_p = x\int -\frac{x}{2} x^3 \lnx dx + \frac{1}{x}\int \frac{x^3}{6} x^3 \lnx dx + x^2\int -\frac{x^3}{3} \lnx dx [/tex]

    Which, er, is....

    [tex] y_p = x(-\frac{1}{10}x^5logx + \frac{1}{50}x^5) + \frac{1}{x}(\frac{1}{42}x^7logx - \frac{1}{294}x^7) + x^2(\frac{1}{12}x^4logx

    - \frac{1}{48}x^4) [/tex]

    Making it..

    [tex] y_p = -\frac{1}{10}x^6logx + \frac{1}{50}x^6 + \frac{1}{42}x^6logx - \frac{1}{294}x^6 + \frac{1}{12}x^6logx - \frac{1}{48}x^6

    [/tex]

    So..

    [tex] y_p = -\frac{1}{140}x^6logx - \frac{83}{19600}x^6 [/tex]


    --------------------------
    [tex] y = y_h + y_p [/tex]

    Putting the two together..

    [tex] y = ax + bx^{-1} + cx^2 - \frac{1}{140}x^6logx - \frac{83}{19600}x^6 [/tex]

    [tex] y' = a - bx^{-2} + 2cx - \frac{3}{70}x^5logx + x^5 - \frac{179}{9800}x^5 [/tex]

    [tex] y'' = 2bx^{-3} + 2c - \frac{3}{14}x^4logx x^4 + 5x^4 - \frac{19}{392}x^4 [/tex]

    Putting in the initial values at y(1)..

    [tex] A = y(1) = a + b + c - \frac{83}{19600} = \frac{10}{32} [/tex]

    [tex] B = y'(1) = a - b + 2c - \frac{179}{9800} = -\frac{24}{32} [/tex]

    [tex] C = y''(1) = 2b + 2c - \frac{19}{392} = -\frac{11}{16} [/tex]

    And solving for a, b, c...

    [tex] A = y(1) = a + b + c = \frac{388}{1225} [/tex]

    [tex] B = y'(1) = a - b + 2c = -\frac{7171}{9800} [/tex]

    [tex] C = y''(1) = 2b + 2c = -\frac{501}{784} [/tex]

    A - B = D

    [tex] 2b - c = 1\frac{387}{9800} [/tex]

    C - D

    [tex] 3c = -\frac{501}{784} - 1\frac{387}{9800} [/tex]

    [tex] c = -\frac{7849}{58800} [/tex]

    And it is starting to look quite silly.. but carrying on to find b, a and putting them into the original equation gets:

    [tex] y = -\frac{109}{39200}x + \frac{53273}{117600}x^{-1} - \frac{7849}{58800}x^2 - \frac{1}{140}x^6logx - \frac{83}{19600}x^6 [/tex]

    Which is frankly, quite ridiculous. And unsurprisingly, it turns out to be wrong. So.



    -----------
    Question 1:

    What went wrong?!


    -----------
    Question 2:

    I am having a lot of trouble finding roots (factorizing).. right now I basically do it by trial and error and for me it takes an

    inordinate amount of time.. Is there a way to do this quickly?
     
    Last edited: Apr 20, 2006
  2. jcsd
  3. Apr 22, 2006 #2
    I've also tried checking some of the calculations using Matlab and they seem to be correct.. I get the feeling that it's not the calculation but the method?

    Also, I've managed to find info on factorizing.. I found out there was this thing called the Factor Theorem and Long Division!
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook




Loading...
Similar Threads for Nonhomogenous LODE Method Date
2nd-order Nonhomogeneous Differential Equation Apr 1, 2018
2nd-order nonhomogeneous equation Mar 9, 2018
Solve a system of nonhomogeneous DEs Mar 25, 2016
Dynamic Damping in a simple spring system Feb 3, 2016
2nd order LODE System Jun 13, 2008