Normal vector of an embedding surface

shinobi20
Messages
277
Reaction score
20
Homework Statement
Given an AdS-Schwarzschild metric in ##(t, z, x, x_i)## coordinates, embed a surface (actually it is a null hypersurface) given by the constraint ##dV = 0## (##S = -t+x ##) using the lightcone coordinates. What is the normal vector along this surface, i.e. along the ##U##-direction?
Relevant Equations
AdS-Schwarzschild metric:
##ds^2 = \frac{1}{z^2} \left( -f(z) dt^2 + \frac{dz^2}{f(z)} + dx^2 +\sum_{i=1}^{d-1} (dx_i)^2 \right), \qquad f(z) = 1-\left(\frac{z}{z_h}\right)^{d+1}##

Lightcone coordinates:
##dU = dt + dx##
##dV = dt - dx##

Metric in lightcone coordinates
##ds^2 = \frac{1}{z^2} \left[ \frac{z^{d+1}}{z_h^{d+1}} \cdot \frac{dU^2 + dV^2}{4} + \left( -2 + \frac{z^{d+1}}{z_h^{d+1}} \right) \frac{dUdV}{2} + \frac{dz^2}{f(z)} + \sum_{i=1}^{d-1} (dx_i)^2 \right]##

Surface in lightcone coordinates:
##ds^2 = \frac{1}{z^2} \left[ \frac{z^{d+1}}{4 z_h^{d+1}} \cdot dU^2 + \frac{dz^2}{f(z)} + \sum_{i=1}^{d-1} (dx_i)^2 \right]##

Surface:
S = -t + x
I will only care about the ##t## and ##x## coordinates so that ##(t, z, x, x_i) \rightarrow (t,x)##.

The normal vector is given by,

##n^\mu = g^{\mu\nu} \partial_\nu S ##

How do I calculate ##n^\mu## in terms of ##U## given that the surface is written in terms of ##t## and ##x##?

Also, after calculating ##n^\mu## in terms of ##U##, how do I transform it back in terms of ##t## and ##x##?
 
Physics news on Phys.org
To calculate the normal vector in terms of U, we first need to rewrite the surface in terms of U. We can do this by writing S as a function of U:##S = S(U)##Now we can calculate the normal vector by taking the partial derivative of S with respect to U:##n^\mu = g^{\mu\nu} \partial_\nu S = g^{\mu\nu} \partial_\nu S(U)##To transform this back into terms of t and x, we can use the chain rule and the definition of U:##U = (t - f(x))##We can then rewrite the normal vector as:##n^\mu = g^{\mu\nu} \frac{\partial S}{\partial U} \frac{\partial U}{\partial t} \frac{\partial t}{\partial x} + g^{\mu\nu} \frac{\partial S}{\partial U} \frac{\partial U}{\partial x} = g^{\mu\nu} \frac{\partial S}{\partial U} (-1) \frac{\partial f}{\partial x} + g^{\mu\nu} \frac{\partial S}{\partial U} \frac{\partial U}{\partial x} ##Now that the normal vector is expressed in terms of t and x, we can use it to calculate other quantities such as the area of the surface or the mean curvature.
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top