Nth partial sum of a series Σ Ak is Sn = (n-1)/(n+1)

  • Context: Undergrad 
  • Thread starter Thread starter Kenshin
  • Start date Start date
  • Tags Tags
    Partial Series Sum
Click For Summary
SUMMARY

The nth partial sum of the series Σ Ak is defined as Sn = (n-1)/(n+1). To find Ak, the formula is derived as Ak = 2/n(n+1). The series Σ Ak converges to 1, as the limit of the sequence of partial sums S(n) approaches 1 when n approaches infinity. This conclusion is based on the definition of convergence, which states that a series converges if the sequence of its partial sums converges.

PREREQUISITES
  • Understanding of series and sequences in mathematics
  • Familiarity with limits and convergence concepts
  • Basic algebraic manipulation skills
  • Knowledge of partial sums and their properties
NEXT STEPS
  • Study the concept of convergence in series, focusing on definitions and examples
  • Learn about the derivation of partial sums for different types of series
  • Explore the implications of the limit of sequences in mathematical analysis
  • Investigate the relationship between series convergence and the behavior of their partial sums
USEFUL FOR

Mathematics students, educators, and anyone interested in series convergence and analysis. This discussion is particularly beneficial for those studying calculus or advanced algebra.

Kenshin
Messages
5
Reaction score
0
If the nth partial sum of a series Σ Ak is Sn = (n-1)/(n+1) , find Ak . Does Σ Ak converge?

i looked in my math book and can't find how to do this.
 
Physics news on Phys.org
Try subtracting S(n) from S(n+1).
 
Either I or Tide misunderstands your question. Subtracting Sn from Sn+1 will give the An+1 but won't tell you whether or not the sequence converges.

The DEFINITION of convergence of a series is the convergence of the sequence of partial sums.

Can you find the limit of the sequence \frac{n-1}{n+1} as n goes to infinity??
 
Ak= 2/x^2+3x+2. so you subtrack Sn+1-Sn. can u show me how that works. it just seems weird that, that is all u have to do. thanks
 
Kenshin,
Look at the last statement made by HallsOfIvy ...
Have u worked out what he said?

-- AI
 
Kenshin said:
Ak= 2/x^2+3x+2. so you subtrack Sn+1-Sn. can u show me how that works. it just seems weird that, that is all u have to do. thanks

To find A_k yes, this is all you have to do (you replaced your "k" with "x" though, and also "n"). Do you understand why this works?

To answer the question of convergence for the series, see HallsofIvy's post. You have to look at \lim_{n\rightarrow\infty}S_n
 
Kenshin said:
Ak= 2/x^2+3x+2. so you subtrack Sn+1-Sn. can u show me how that works. it just seems weird that, that is all u have to do. thanks


Let A(k) be any series, and S(n) the sum of the first n terms, then S(n+1) is the sum of the first n terms plus the n+1'st term. Can you now prove the result that puzzles you?
 
I DID misunderstand the question! There were TWO things asked:

1) Find A(k) which is what Tide was responding to.

Since S(n), the "partial sum is defined as A(1)+ A(2)+ ...+ A(n),
A(n)= S(n)- S(n-1)= (n-1)/(n+1) - (n-1-1)/(n-1+1)= (n-1)/(n+1)- (n-2)/n
= n(n-1)/n(n+1)- (n+1)(n-2)/n(n+1)= (n2-n-n2+n+2)/n(n+1)
= 2/n(n+1).

2) Since A(k) converges if and only if the sequence of partial sums converges, look at
S(n)= (n-1)/(n+1). Divide both numerator and denominator by n: (1- 1/n)/(1+ 1/n).
As n goes to infinity, 1/n goes to 0 so the S(n) converges to 1.

Yes, Σ A(k) converges. In fact, it converges to 1.
 
I don't think you mean if and only if in part 2) there.
 
  • #10
matt grime said:
I don't think you mean if and only if in part 2) there.


? That's certainly the definition of "convergence of a series" that I learned.

If the sequence of partial sums converges, then the series converges to the same limit.

If the sequence of partial sums does not converge, then the series does not converge.
 
  • #11
HallsofIvy said:
2) Since Σ A(k) converges if and only if the sequence of partial sums converges,

I inserted missing Σ?
 
  • #12
The reason I didn't put a correction is that two spring to mind. A(k) converges if the sequence of partial sums converges, or by definition the sum of the sequence converges if and only if the sequence of partial sums converges, and I wasn't sure which Hallsofivy meant. It seems from your reply, that you intended the second option.
 
  • #13
Oh- I forgot the Σ!
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 11 ·
Replies
11
Views
5K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 0 ·
Replies
0
Views
3K