Nth Roots of Unity Challenge Problem

  • Context: MHB 
  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Roots Unity
Click For Summary
SUMMARY

The challenge problem involves calculating two expressions related to the $n^{\text{th}}$ roots of unity, denoted as $a_1, a_2, \ldots, a_{n-1}$. The first expression, $(1-a_1)(1-a_2)(1-a_3) \cdots (1-a_{n-1})$, evaluates to $n$. The second expression, $\frac{1}{2-a_1}+\frac{1}{2-a_2}+\frac{1}{2-a_3}+\cdots +\frac{1}{2-a_{n-1}}$, simplifies to $\frac{n2^{n-1} -2^n+1}{2^n-1}$. Both results utilize the polynomial $f(x)=\frac{x^{n}-1}{x-1}$ and its properties.

PREREQUISITES
  • Understanding of $n^{\text{th}}$ roots of unity
  • Familiarity with polynomial functions and their roots
  • Knowledge of logarithmic differentiation
  • Ability to manipulate complex fractions and sums
NEXT STEPS
  • Study the properties of $n^{\text{th}}$ roots of unity in depth
  • Learn about polynomial factorization and root relationships
  • Explore logarithmic differentiation techniques
  • Investigate applications of complex analysis in polynomial roots
USEFUL FOR

Mathematicians, students studying complex analysis, and anyone interested in advanced algebraic techniques involving roots of unity and polynomial functions.

sbhatnagar
Messages
87
Reaction score
0
Challenge Problem $1,a_1,a_2,a_3, \cdots ,a_{n-1}$ are the $n^{\text{th}}$ roots of unity.

Find the value of

i) $(1-a_1)(1-a_2)(1-a_3) \cdots (1-a_{n-1})$

ii)$\displaystyle \frac{1}{2-a_1}+\frac{1}{2-a_2}+\frac{1}{2-a_3}+\cdots +\frac{1}{2-a_{n-1}}$
 
Mathematics news on Phys.org
sbhatnagar said:
Challenge Problem $1,a_1,a_2,a_3, \cdots ,a_{n-1}$ are the $n^{\text{th}}$ roots of unity.

Find the value of

i) $(1-a_1)(1-a_2)(1-a_3) \cdots (1-a_{n-1})$

ii)$\displaystyle \frac{1}{2-a_1}+\frac{1}{2-a_2}+\frac{1}{2-a_3}+\cdots +\frac{1}{2-a_{n-1}}$

Is...

$\displaystyle f(x)=\frac{x^{n}-1}{x-1}= 1 + x + x^{2} + ... + x^{n-1} = \prod_{k=1}^{n-1} (x-a_{k})$ (1) ... so that the answer to i) is $f(1)=n$. The answer to ii) will be given in a successive post...

Kind regards

$\chi$ $\sigma$
 
Last edited:
sbhatnagar said:
Challenge Problem $1,a_1,a_2,a_3, \cdots ,a_{n-1}$ are the $n^{\text{th}}$ roots of unity.

Find the value of

i) $(1-a_1)(1-a_2)(1-a_3) \cdots (1-a_{n-1})$

ii)$\displaystyle \frac{1}{2-a_1}+\frac{1}{2-a_2}+\frac{1}{2-a_3}+\cdots +\frac{1}{2-a_{n-1}}$
As chisigma has noted, the roots of $f(x)=\dfrac{x^{n}-1}{x-1}$ are $a_1,a_2,a_3, \ldots ,a_{n-1}$. The roots of $$f(2-x)=\frac{(2-x)^{n}-1}{(2-x)-1} = \bigl((2-x)^{n}-1\bigr)(1-x)^{-1} = \bigl((2-x)^{n}-1\bigr)(1+x+x^2+\ldots)$$ are $(2-a_1),(2-a_2),(2-a_3), \ldots ,(2-a_{n-1})$. The sum of the reciprocals of these roots will be the negative of the coefficient of $x$ in that last expression, divided by the constant term. Therefore $$ \frac{1}{2-a_1}+\frac{1}{2-a_2}+\frac{1}{2-a_3}+\ldots +\frac{1}{2-a_{n-1}} = \boxed{\dfrac{n2^{n-1} -2^n+1}{2^n-1}}.$$

You can check that result by working out the value of the sum when $n=4$. In that case, $a_1,a_2,a_3$ are $-1,i,-i$, and the sum is $\dfrac13+\dfrac1{2-i}+\dfrac1{2+i}$, which simplifies to $\dfrac{17}{15}$, in accordance with the boxed formula.
 
Here is another solution for 2!

We have
$$ \frac{x^n-1}{x-1}=(x-a_1)(x-a_2)(x-a_3)\cdots (x-a_{n-1}) $$
Let $f(x)=\log\frac{x^n -1}{x-1}$
$$f(x)=\log\dfrac{x^n-1}{x-1}=\log(x-a_1)+\log(x-a_2)+\log(x-a_3)+\cdots +\log(x-a_{n-1})$$
The derivative of $f(x)$ will be
$$f'(x)=\dfrac{ \left[n x^{-1+n}-\dfrac{-1+x^n}{(-1+x)}\right]}{-1+x^n}=\frac{1}{x-a_1}+\frac{1}{x-a_2}+\frac{1}{x-a_3}+\cdots +\frac{1}{x-a_{n-1}}$$

putting $x=2$

$$f'(2)=\frac{n 2^{n-1}-2^n+1}{2^n-1}=\frac{1}{2-a_1}+\frac{1}{2-a_2}+\frac{1}{2-a_3}+\cdots +\frac{1}{2-a_{n-1}}$$
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
858
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K