Nth Roots of Unity Challenge Problem

  • Context: MHB 
  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Roots Unity
Click For Summary

Discussion Overview

The discussion revolves around a challenge problem involving the $n^{\text{th}}$ roots of unity, specifically focusing on two expressions: the product of $(1-a_k)$ for $k=1$ to $n-1$ and the sum of the reciprocals $\frac{1}{2-a_k}$ for the same range. Participants explore various mathematical approaches to derive the values of these expressions.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Exploratory

Main Points Raised

  • One participant proposes that the product $(1-a_1)(1-a_2)(1-a_3) \cdots (1-a_{n-1})$ can be evaluated using the polynomial $f(x)=\frac{x^{n}-1}{x-1}$, concluding that the answer is $n$.
  • Another participant elaborates on the sum of the reciprocals, stating that the roots of the transformed polynomial $f(2-x)$ can be used to find the sum $\frac{1}{2-a_1}+\frac{1}{2-a_2}+\cdots +\frac{1}{2-a_{n-1}}$, arriving at the boxed formula $\frac{n2^{n-1} -2^n+1}{2^n-1}$.
  • A third participant offers an alternative solution for the sum, utilizing logarithmic differentiation of the polynomial $f(x)$ to derive the same expression for the sum of the reciprocals when evaluated at $x=2$.

Areas of Agreement / Disagreement

Participants present multiple approaches to solving the problem, particularly for the second part regarding the sum of the reciprocals. While there is agreement on the final formula derived, the methods used to arrive at that conclusion differ, indicating a lack of consensus on the preferred approach.

Contextual Notes

The discussion includes various mathematical transformations and assumptions related to the properties of polynomials and their roots. Some steps in the derivations may depend on specific conditions or definitions that are not fully explored in the posts.

sbhatnagar
Messages
87
Reaction score
0
Challenge Problem $1,a_1,a_2,a_3, \cdots ,a_{n-1}$ are the $n^{\text{th}}$ roots of unity.

Find the value of

i) $(1-a_1)(1-a_2)(1-a_3) \cdots (1-a_{n-1})$

ii)$\displaystyle \frac{1}{2-a_1}+\frac{1}{2-a_2}+\frac{1}{2-a_3}+\cdots +\frac{1}{2-a_{n-1}}$
 
Mathematics news on Phys.org
sbhatnagar said:
Challenge Problem $1,a_1,a_2,a_3, \cdots ,a_{n-1}$ are the $n^{\text{th}}$ roots of unity.

Find the value of

i) $(1-a_1)(1-a_2)(1-a_3) \cdots (1-a_{n-1})$

ii)$\displaystyle \frac{1}{2-a_1}+\frac{1}{2-a_2}+\frac{1}{2-a_3}+\cdots +\frac{1}{2-a_{n-1}}$

Is...

$\displaystyle f(x)=\frac{x^{n}-1}{x-1}= 1 + x + x^{2} + ... + x^{n-1} = \prod_{k=1}^{n-1} (x-a_{k})$ (1) ... so that the answer to i) is $f(1)=n$. The answer to ii) will be given in a successive post...

Kind regards

$\chi$ $\sigma$
 
Last edited:
sbhatnagar said:
Challenge Problem $1,a_1,a_2,a_3, \cdots ,a_{n-1}$ are the $n^{\text{th}}$ roots of unity.

Find the value of

i) $(1-a_1)(1-a_2)(1-a_3) \cdots (1-a_{n-1})$

ii)$\displaystyle \frac{1}{2-a_1}+\frac{1}{2-a_2}+\frac{1}{2-a_3}+\cdots +\frac{1}{2-a_{n-1}}$
As chisigma has noted, the roots of $f(x)=\dfrac{x^{n}-1}{x-1}$ are $a_1,a_2,a_3, \ldots ,a_{n-1}$. The roots of $$f(2-x)=\frac{(2-x)^{n}-1}{(2-x)-1} = \bigl((2-x)^{n}-1\bigr)(1-x)^{-1} = \bigl((2-x)^{n}-1\bigr)(1+x+x^2+\ldots)$$ are $(2-a_1),(2-a_2),(2-a_3), \ldots ,(2-a_{n-1})$. The sum of the reciprocals of these roots will be the negative of the coefficient of $x$ in that last expression, divided by the constant term. Therefore $$ \frac{1}{2-a_1}+\frac{1}{2-a_2}+\frac{1}{2-a_3}+\ldots +\frac{1}{2-a_{n-1}} = \boxed{\dfrac{n2^{n-1} -2^n+1}{2^n-1}}.$$

You can check that result by working out the value of the sum when $n=4$. In that case, $a_1,a_2,a_3$ are $-1,i,-i$, and the sum is $\dfrac13+\dfrac1{2-i}+\dfrac1{2+i}$, which simplifies to $\dfrac{17}{15}$, in accordance with the boxed formula.
 
Here is another solution for 2!

We have
$$ \frac{x^n-1}{x-1}=(x-a_1)(x-a_2)(x-a_3)\cdots (x-a_{n-1}) $$
Let $f(x)=\log\frac{x^n -1}{x-1}$
$$f(x)=\log\dfrac{x^n-1}{x-1}=\log(x-a_1)+\log(x-a_2)+\log(x-a_3)+\cdots +\log(x-a_{n-1})$$
The derivative of $f(x)$ will be
$$f'(x)=\dfrac{ \left[n x^{-1+n}-\dfrac{-1+x^n}{(-1+x)}\right]}{-1+x^n}=\frac{1}{x-a_1}+\frac{1}{x-a_2}+\frac{1}{x-a_3}+\cdots +\frac{1}{x-a_{n-1}}$$

putting $x=2$

$$f'(2)=\frac{n 2^{n-1}-2^n+1}{2^n-1}=\frac{1}{2-a_1}+\frac{1}{2-a_2}+\frac{1}{2-a_3}+\cdots +\frac{1}{2-a_{n-1}}$$
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
999
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K