MHB Nth Roots of Unity Challenge Problem

  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Roots Unity
Click For Summary
The challenge problem involves finding two expressions related to the $n^{\text{th}}$ roots of unity. The first expression, $(1-a_1)(1-a_2)(1-a_3) \cdots (1-a_{n-1})$, evaluates to $n$. The second expression, $\frac{1}{2-a_1}+\frac{1}{2-a_2}+\cdots +\frac{1}{2-a_{n-1}}$, simplifies to $\frac{n2^{n-1} - 2^n + 1}{2^n - 1}$. This result can be verified by substituting specific values for $n$, such as $n=4$. The discussion highlights the use of polynomial roots and logarithmic differentiation to derive these results.
sbhatnagar
Messages
87
Reaction score
0
Challenge Problem $1,a_1,a_2,a_3, \cdots ,a_{n-1}$ are the $n^{\text{th}}$ roots of unity.

Find the value of

i) $(1-a_1)(1-a_2)(1-a_3) \cdots (1-a_{n-1})$

ii)$\displaystyle \frac{1}{2-a_1}+\frac{1}{2-a_2}+\frac{1}{2-a_3}+\cdots +\frac{1}{2-a_{n-1}}$
 
Mathematics news on Phys.org
sbhatnagar said:
Challenge Problem $1,a_1,a_2,a_3, \cdots ,a_{n-1}$ are the $n^{\text{th}}$ roots of unity.

Find the value of

i) $(1-a_1)(1-a_2)(1-a_3) \cdots (1-a_{n-1})$

ii)$\displaystyle \frac{1}{2-a_1}+\frac{1}{2-a_2}+\frac{1}{2-a_3}+\cdots +\frac{1}{2-a_{n-1}}$

Is...

$\displaystyle f(x)=\frac{x^{n}-1}{x-1}= 1 + x + x^{2} + ... + x^{n-1} = \prod_{k=1}^{n-1} (x-a_{k})$ (1) ... so that the answer to i) is $f(1)=n$. The answer to ii) will be given in a successive post...

Kind regards

$\chi$ $\sigma$
 
Last edited:
sbhatnagar said:
Challenge Problem $1,a_1,a_2,a_3, \cdots ,a_{n-1}$ are the $n^{\text{th}}$ roots of unity.

Find the value of

i) $(1-a_1)(1-a_2)(1-a_3) \cdots (1-a_{n-1})$

ii)$\displaystyle \frac{1}{2-a_1}+\frac{1}{2-a_2}+\frac{1}{2-a_3}+\cdots +\frac{1}{2-a_{n-1}}$
As chisigma has noted, the roots of $f(x)=\dfrac{x^{n}-1}{x-1}$ are $a_1,a_2,a_3, \ldots ,a_{n-1}$. The roots of $$f(2-x)=\frac{(2-x)^{n}-1}{(2-x)-1} = \bigl((2-x)^{n}-1\bigr)(1-x)^{-1} = \bigl((2-x)^{n}-1\bigr)(1+x+x^2+\ldots)$$ are $(2-a_1),(2-a_2),(2-a_3), \ldots ,(2-a_{n-1})$. The sum of the reciprocals of these roots will be the negative of the coefficient of $x$ in that last expression, divided by the constant term. Therefore $$ \frac{1}{2-a_1}+\frac{1}{2-a_2}+\frac{1}{2-a_3}+\ldots +\frac{1}{2-a_{n-1}} = \boxed{\dfrac{n2^{n-1} -2^n+1}{2^n-1}}.$$

You can check that result by working out the value of the sum when $n=4$. In that case, $a_1,a_2,a_3$ are $-1,i,-i$, and the sum is $\dfrac13+\dfrac1{2-i}+\dfrac1{2+i}$, which simplifies to $\dfrac{17}{15}$, in accordance with the boxed formula.
 
Here is another solution for 2!

We have
$$ \frac{x^n-1}{x-1}=(x-a_1)(x-a_2)(x-a_3)\cdots (x-a_{n-1}) $$
Let $f(x)=\log\frac{x^n -1}{x-1}$
$$f(x)=\log\dfrac{x^n-1}{x-1}=\log(x-a_1)+\log(x-a_2)+\log(x-a_3)+\cdots +\log(x-a_{n-1})$$
The derivative of $f(x)$ will be
$$f'(x)=\dfrac{ \left[n x^{-1+n}-\dfrac{-1+x^n}{(-1+x)}\right]}{-1+x^n}=\frac{1}{x-a_1}+\frac{1}{x-a_2}+\frac{1}{x-a_3}+\cdots +\frac{1}{x-a_{n-1}}$$

putting $x=2$

$$f'(2)=\frac{n 2^{n-1}-2^n+1}{2^n-1}=\frac{1}{2-a_1}+\frac{1}{2-a_2}+\frac{1}{2-a_3}+\cdots +\frac{1}{2-a_{n-1}}$$
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
716
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
6
Views
2K