Nuclear Fission Energy and Mass Loss

AI Thread Summary
The discussion centers on the calculation of energy released during the fission of Uranium-235, specifically addressing the treatment of the incoming neutron. It is clarified that the incoming neutron does not possess binding energy and can be excluded from the energy calculation, which focuses solely on the change in binding energies of the products and reactants. A correction was made regarding the nucleon count, confirming that the total number of nucleons should remain constant throughout the reaction. Participants emphasize the importance of rounding the final energy result to the correct number of significant figures. The conversation highlights the distinction between bound and unbound nucleons in energy calculations.
resurgance2001
Messages
197
Reaction score
9
Homework Statement
When a Uranium 235 nucleus absorbs a slow moving neutron and undergoes fission one possible pair of fission fragments is technetium 112 and Indium 122. In this reaction a further 2 neutrons are emitted. Given the binding energy per nucleon of U-235 = 7.59 MeV, the binding energy of Tc - 112 = 8.36 MeV per nucleon and 8.51 MeV per nucleon of In -122 , calculate the energy released in MeV when a single nucleus of U-235 undergoes fission in this way. Note that in the reaction there is a single incoming neutron which is absorbed by the U-235 nucleus to trigger the reaction.
Relevant Equations
Energy released = Binding Energy of products - Binding Energy of Reactant
(112 x 8.36 + 122 x 8.51) - 235 x 7.59 = 190.89 MeV

My question is what should I do about the incoming neutron on the left that starts the fission. My thinking is that it does not have any binding energy and therefore I left it out of the calculation. Is that correct? Thank you
CB7B5063-0FCC-4A42-853F-84FAD1D0A92E.jpeg
 
Last edited:
Physics news on Phys.org
resurgance2001 said:
Homework Statement: When a Uranium 235 nucleus absorbs a slow moving neutron and undergoes fission one possible pair of fission fragments is technetium 112 and Indium 122. In this reaction a further 12 neutrons are emitted.
Could there be a mistake in the question? As I read it:
You start with 235+1 = 236 nucleons.
You end up with 112+122+12 = 246 nucleons.
But the number of nucleons shouldn't have changed.
 
Steve4Physics said:
Could there be a mistake in the question? As I read it:
You start with 235+1 = 236 nucleons.
You end up with 112+122+12 = 246 nucleons.
But the number of nucleons shouldn't have changed.
I have edited the question. That was a typo which I have corrected. Thank you
 
resurgance2001 said:
Relevant Equations: Energy released = Binding Energy of products - Binding Energy of Reactant

(112 x 8.36 + 122 x 8.51) - 235 x 7.59 = 190.89 MeV

My question is what should I do about the incoming neutron on the left that starts the fission. My thinking is that it does not have any binding energy and therefore I left it out of the calculation. Is that correct? Thank you
Yes - that's correct. And, of course, the same applies to the two outgoing neutrons on the right.

The energy released here is entirely due to the change in binding energies – so you can ignore unbound nucleons.

You should be able to convince yourself of this by starting with 95 separate protons and 141 separate neutrons and finding the energy released when your use them to construct either:
a) an U-235 nucleus (+1 left-over neutron) or
b) a Tc-112 nucleus and an In-122 nucleus (+2 left-over neutrons).

Note, if you were given masses (rather than binding energies) you would have to consider the total masses on the left and right – which would have to include the unbound particles.

By the way, don’t forget that the final answer should be rounded to an appropriate number of significant figures.
 
Thank you
 
  • Like
Likes Steve4Physics
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...

Similar threads

Back
Top