Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Nuclear Power Plant Spent Fuel Types

  1. Feb 4, 2012 #1
    nuclear engineers
    it does seem like it requires types of
    current nuclear power plants.
    so what are they and what are
    the spent fuels?

    Have A Nice Day!
     
  2. jcsd
  3. Feb 4, 2012 #2

    Astronuc

    User Avatar

    Staff: Mentor

    Light water reactors - 359 in operation in the world, of which 104 are in the US.
    http://www.iaea.org/NuclearPower/WCR/LWR/ [Broken]


    The USA has 104 nuclear power reactors - 69 pressurized water reactors (PWRs) with combined capacity of about 67 GWe and 35 boiling water reactors (BWRs) with combined capacity of about 34 GWe.
    http://www.world-nuclear.org/info/inf41.html

    France has 58 nuclear reactors operated by Electricite de France (EdF), with total capacity of over 63 GWe, supplying 421 billion kWh per year of electricity (net), 78% of the total generated there in 2011.
    http://www.world-nuclear.org/info/inf40.html

    Russia has 33 reactors: 1 FBR, 11 RBMKs, 17 VVERs, and 4 small graphite moderated reactors.
    http://www.world-nuclear.org/info/inf45.html

    The Republic of Korea (S. Korea) has 4 CANDUs and 17 PWRs.
    http://www.world-nuclear.org/info/inf81.html

    Germany has 17 operating nuclear power reactors. Six units are boiling water reactors (BWR), 11 are pressurised water reactors (PWR). All were built by Siemens-KWU.
    http://www.world-nuclear.org/info/inf43.html

    The UK has a fleet of gas-cooled (CO2) reactors, 3 Magnox and 14 AGRs. There is one PWR in the UK.
    http://www.world-nuclear.org/info/inf84.html

    Sweden has 10 LWRs - 7 BWRs (2 BWR units were shutdown, one in 1999 and the other in 2005) and 3 PWRs
    http://www.world-nuclear.org/info/inf42.html

    Spain has 8 LWRs - 2 BWRs and 6 PWRs
    http://www.world-nuclear.org/info/inf85.html

    Switzerland has 5 LWRs - 2 BWRs and 3 PWRs.
    http://www.world-nuclear.org/info/inf86.html

    There are a handful of liquid metal (fast) reactors.

    More general information - http://www.world-nuclear.org/info/
    http://www.world-nuclear.org/info/reactors.html


    Fuel is spent when the fissile inventory is depleted and fission products have accumulated to the point where is it not economical to continue operation, or the fuel has reached it's technical (licensed) limits, and the fuel is discharged.
     
    Last edited by a moderator: May 5, 2017
  4. Feb 4, 2012 #3
    asto nuke
    this was on computer bright and early.
    you certainly had your coffee.
    that is a FIRST CLASS answer.
    thank you sir.
    i will respond soon.

    Have A Nice Day!
     
  5. Feb 13, 2012 #4
    Astronuc's answer was excellent. This is my first post and I hope that I have it in the right place. I believe that this question is related, so I will ask it here. The mods can certainly move it if I have posted in the wrong place.

    A friend asked me about a statement he read that bombs could be made from spent fuel from most reactors.

    1) Is this because the the amount of the fissionable plutonium, while lower than optimum, is still high enough to build a bomb with sufficient effort?

    2) Does anyone know of a source that links the spent fuels results to the type of reactor used?

    Thanks.
     
  6. Feb 27, 2012 #5

    Astronuc

    User Avatar

    Staff: Mentor

    Ref: http://world-nuclear.org/info/inf29.html

    WG-Pu has better than 90% Pu-239.

    With respect to 2), the fuel geometric characteristics are general specific to a reactor design. In PWRs (including VVERs), the control element geometry is fixed, so each unit is restricted to a given geometric (lattice) design, unless the upper head and control guide structures are replaced.

    BWRs have more flexibility, and we've seen an evolution from 7x7 to 8x8 to 9x9 and 10x10 lattices over the past 40 years.

    CANDUs have similar flexibility and more advanced fuel element designs use more fuel rods in the same lateral envelope.

    AGRs are pretty much fixed in what they use.

    The discharge burnup depends on energy density, batch fraction and cycle length. Discharge burnups for LWRs are typically in the range of 45-55 GWd/tHM, with BWRs lagging PWRs. CANDUs use much lower enrichment, so their discharge burnup is much less.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Nuclear Power Plant Spent Fuel Types
Loading...