Nuclear Reaction for Alpha Particle Bombardment

Click For Summary
SUMMARY

The discussion focuses on the nuclear reaction where a nitrogen nucleus (N, A=14, Z=7) is bombarded by an alpha particle, resulting in the transmutation to an oxygen nucleus (O, A=17, Z=8) and a proton. The minimum energy required for this reaction is calculated to be 1.89 x 10^-13 J. The participants clarify that the mass defect is calculated using the equation E=mc², and emphasize that the kinetic energy of the alpha particle is crucial for the reaction, as it is significantly higher than that of the nitrogen and oxygen atoms at room temperature.

PREREQUISITES
  • Understanding of nuclear reactions and transmutation
  • Familiarity with mass-energy equivalence (E=mc²)
  • Knowledge of nuclear binding energy concepts
  • Basic principles of kinetic energy in nuclear physics
NEXT STEPS
  • Research the principles of nuclear binding energy and its impact on nuclear reactions
  • Learn about the calculation of mass defect in various nuclear reactions
  • Study the differences between alpha, beta, and gamma radiation
  • Explore advanced topics in nuclear fission and fusion reactions
USEFUL FOR

Students and professionals in nuclear physics, researchers in nuclear energy, and anyone interested in understanding nuclear reactions and their energy dynamics.

ghulamali
Messages
7
Reaction score
0
complete data of question:
a nitrogen nucleus N(A=14,Z=7) bombared with an alpha particle of a certain energy transmutes to an oxygen nucleus(A=17,Z=8) and a proton
a:write a equation for this nuclear reaction
b:find the minimum energy of alpha particle to make this reactin occur
(mass of nitrogen=2.32530*10^-26kg,mass of oxygen=2.82282*10^-26kg,mass of proton=0.16735*10^-26kg and mass of alpha particle=0.66466*10^-26kg)
attempt on this questin:
i have written the reaction
in second part we have to calculate mas defect for finding its energy by e=mc^2
in fission reaction i learned that mass of reaction will always be greater than product,but here by calculation mass of product is greater ,why is this so.and please tell me why energy equivalent to mass defect is always alpha particle energy why not other elements like nitrogen and oxygen
answer of this question is1.89*10^-13j,i have calculated this answer but that comes in negative as i subtracted reactants minus product
 
Physics news on Phys.org
In a fission reaction some rest mass energy is converted to kinetic energy. The products of the reaction get the kinetic energy.
In this reaction the alpha particle starts with a large amount of kinetic energy which is then used to create the extra mass of the products. Because we start with large amounts of KE you need to subtract the mass of the reactants from the products to find the 'mass defect'.
Remember there isn't really a mass defect. We get the mass defect because we use rest mass values. The mass of the moving alpha particle is higher than its rest mass value.
The nitrogen and oxygen atom are assumed to have very little KE. We do not normally find atoms moving at very high energys. At room temperature their velocity due to temperature is about 500 m/s.
It is the high energy of the alpha particle which makes it an ionising radiation particle, distinguishing it from just an ionised helium atom. The same is true of the difference between beta radiation and electrons. 1.89*10^-13 j may not sound high but it is enough to make the alpha particle move at nearly 8 million m/s.
 
thank you,hope u will help me in future as well
 
ghulamali said:
complete data of question:
a nitrogen nucleus N(A=14,Z=7) bombared with an alpha particle of a certain energy transmutes to an oxygen nucleus(A=17,Z=8) and a proton
a:write a equation for this nuclear reaction
b:find the minimum energy of alpha particle to make this reactin occur
(mass of nitrogen=2.32530*10^-26kg,mass of oxygen=2.82282*10^-26kg,mass of proton=0.16735*10^-26kg and mass of alpha particle=0.66466*10^-26kg)
attempt on this questin:
i have written the reaction
in second part we have to calculate mas defect for finding its energy by e=mc^2
in fission reaction i learned that mass of reaction will always be greater than product,but here by calculation mass of product is greater ,why is this so.and please tell me why energy equivalent to mass defect is always alpha particle energy why not other elements like nitrogen and oxygen
answer of this question is1.89*10^-13j,i have calculated this answer but that comes in negative as i subtracted reactants minus product
It is not true that in a fission event the mass of the original nucleus will always be greater than the masses of the products. In fact, in the fission of a U nucleus, this is not the case. The masses of the products are less than the mass of the original nucleus. If it were otherwise, energy would not be released.

Whether energy is released in any nuclear reaction is determined by the difference in total nuclear binding energies of the original nuclei compared to the total nuclear binding energies of the products.

Since these binding energies indicate the amount of energy required to break all the nuclear bonds, the greater the binding energies, the lower the mass per nucleon. If the total nuclear binding energies of the products is greater than the total nuclear binding energies of the original nuclei, there is a net release of energy.

AM
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
5K
Replies
9
Views
6K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 23 ·
Replies
23
Views
3K
  • · Replies 21 ·
Replies
21
Views
2K