Nuclei Single-particles Harmonic Oscillator Potential

Click For Summary

Discussion Overview

The discussion centers around the harmonic oscillator potential for single-particle states in nuclear physics, specifically addressing the quantum numbers associated with energy levels in the shell model. Participants explore the relationship between the principal quantum number and the angular momentum quantum number, as well as the interpretation of energy levels and states in this context.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant questions the oscillation of the l quantum number from 0 to 1, then from 2 to 3, and so forth, as n increases, seeking clarity on the assignment of l states to energy levels.
  • Another participant clarifies that "Level 0" does not correspond to n=0 and explains that the levels are ordered by energy rather than principal quantum number, providing examples of states associated with specific energy levels.
  • A third participant references an image that illustrates the energy levels, emphasizing that the energy required to fill subshells determines the ordering of levels.
  • There is an acknowledgment of the complexity of the topic, with one participant expressing gratitude for the insights shared by others.
  • A suggestion is made to refer to a specific book on the Nuclear Shell Model for further understanding.

Areas of Agreement / Disagreement

Participants generally agree on the interpretation of energy levels and the ordering of quantum states, but there remains some uncertainty regarding the specific assignment of l states to energy levels and the implications of degeneracy.

Contextual Notes

Some assumptions about the relationship between quantum numbers and energy levels may not be fully articulated, and the discussion does not resolve the complexities of the harmonic oscillator potential in nuclear physics.

bluestar
Messages
80
Reaction score
0
I am looking into the calculations of a harmonic oscillator potential for nuclei single-particles. The information I am looking at is at:
http://en.wikipedia.org/wiki/Shell_model the specific section “Deformed harmonic oscillator approximated model”

The specific question is, I don’t understand why the l quantum number oscillates from 0 to 1 as n increases. Then after the first 2 levels the next series of l quantum numbers oscillates from 2 to 3 as n increases. And then again after 2 more levels the next series of l quantum numbers oscillates from 4 to 5. And of course all states at a particular level are added together to reflect the cumulative state as shown in the table. Here is a copy of the table that I am confused about which occurs right after the first two equations in that section.
“In particular, the first six shells are:
•level 0: 2 states (l = 0) = 2.
•level 1: 6 states (l = 1) = 6.
•level 2: 2 states (l = 0) + 10 states (l = 2) = 12.
•level 3: 6 states (l = 1) + 14 states (l = 3) = 20.
•level 4: 2 states (l = 0) + 10 states (l = 2) + 18 states (l = 4) = 30.
•level 5: 6 states (l = 1) + 14 states (l = 3) + 22 states (l = 5) = 42. “

Why don’t the levels/states go like this?

•level 0: (l = 0) = 2 >> 2 states
•level 1: (l = 0) = 2 +(l = 1) = 6 >> 8 states
•level 2: (l = 0) = 2 +(l = 1) = 6+(l = 2) = 10 >> 18 states
•level 3: (l = 0) = 2 +(l = 1) = 6+(l = 2) = 10+(l = 3) = 14 >> 32 states
•level 4: (l = 0) = 2 +(l = 1) = 6+(l = 2) = 10+(l = 3) = 14+ (l = 4) = 18 >> 50 states
•level 5: (l = 0) = 2 +(l = 1) = 6+(l = 2) = 10+(l = 3) = 14+ (l = 4) = 18 + (l = 5) = 22. >> 72 states

I understand how the states are calculated because of the table presented at the very top of this section. I just don’t understand how they determine which l states goes with each level.

Your insight would be appreciated.
 
Physics news on Phys.org
You should not think "Level 0" means n=0 where n is the principal quantum number (same when you look at the wood-saxon + spin-orbit coupling).


level 0: 2 states (l = 0) = 2, means that this is the lowest lying energy level with L=0, i.e 1s, and it has 2states.

Then you next energy level will be:
level 1: 6 states (L = 1) = 6, i.e 1p

Now comes the fun part, solving this potential, you'll get that the 1d (the lowest lying L=2 states) and the SECOND lowest s (L=0) states have the same energy - i.e they are degenerate.

level 2: 2 states (l = 0) + 10 states (l = 2) = 12

And so on.

So how you should read that scheme is that the levels are ordered in energy, solve the S.Equation and look for yourself ;-)

I hope this helped a bit.
 
http://en.wikipedia.org/wiki/Image:Shells.png

Shows levels ordered by energy if you don't feel like solving any equations.

As Glenn said, it's not based upon their principal quantum number, but rather the energy level is based on the energy required to fill the subshells (which may have different principal quantum numbers).

Interestingly, notice that even levels only include even numbered subshells and odd levels only include odd numbered subshells.
 
Wow! Thanks Guys,

That clears up a lot.

I greatly appreciate the help.
 
So prob, we are here for you.

The Nuclear Shell Model by Kris Heyde

is a quite good book.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
0
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K