MHB Null Space of A: Find Rank & Dim.

Click For Summary
The discussion focuses on finding the null space, rank, and dimension of matrix A. The null space basis is derived from expressing variables in terms of free parameters, leading to three vectors that form a basis for the null space. It is established that these vectors are linearly independent through a series of equations, confirming their independence. The nullity of A is determined to be 3, as there are 4 equations and 7 unknowns, resulting in a dimension of 3 for the null space. Consequently, the rank of A is calculated to be 4, following the relationship between rank and nullity.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Let
$$\left[\begin{array}{rrrrrrr}
1 & 0 & -1 & 0 & 1 & 0 & 3\\
0 & 1 & 0 & 0 & 1 & 0 & 1\\
0 & 0 & 0 & 1 & 4 & 0 & 2\\
0 & 0 & 0 & 0 & 0 & 1 & 3
\end{array}\right]$$
Find a basis for the null space of A, the dimension of the null space of A, and the rank of A.ok following an book example I did this $Ax=b$
$$\left[ \begin{array}{ccccccc}
1 & 0 & -1 & 0 & 1 & 0 & 3 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 4 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 1 & 3
\end{array} \right]
\left[ \begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6} \\ x_{7}
\end{array} \right]
=\left[ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0
\end{array} \right]$$
which would result in
$$\begin{array}{rrrrrrr}
x_1 & &-x_3 & &x_5 & &3x_7=0 \\
&x_2 & & &x_5 & &x_7 =0\\
& & & x_4 & 4x_5 & &2x_7=0 \\
& & & & & x_6 &3x_7=0
\end{array}$$ hopefully so far !
 
Physics news on Phys.org
It is clear (by inspection, working from the last equation upwards) that you can let $x_7,x_5,x_1$ be arbitrary, then $x_2,x_3,x_4,x_6$ can be expressed in terms of them as:
$$x_6\ =\ -3x_7 \\ x_4\ =\ -4x_5-2x_7 \\ x_2\ =\ -x_5-x_7 \\ x_3\ =\ x_1+x_5+3x_7.$$
Hence:
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7\end{pmatrix}\ =\ x_1\underbrace{\begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{pmatrix}}_{\mathbf v_1} + x_5\underbrace{\begin{pmatrix} 0 \\ -1 \\ 1 \\ -4 \\ 1 \\ 0 \\ 0\end{pmatrix}}_{\mathbf v_2} + x_7\underbrace{\begin{pmatrix} 0 \\ -1 \\ 3 \\ -2 \\ 0 \\ -3 \\ 1\end{pmatrix}}_{\mathbf v_3}.$$
Verify that $\mathbf v_1,\mathbf v_2,\mathbf v_3$ are linearly independent and thus form a basis for the nullspace of $A$; hence $A$ has nullity $3$. The rank of $A$ can then be found from the formula $r(A) = \dim(A)-n(A)$.
 
You have 4 equations in 7 unknowns so the null space is 7- 4= 3 dimensional. You will need 3 basis vectors.
 
Ok that was very helpful

Not sure if I would know the linear independence of these
 
You prove those vectors are independent using the definitions of "independent" or "dependent".
Suppose the three vectors given by Olinguito were NOT independent. Then there would exist numbers, a, b, and c, not all zero, such that
a\begin{pmatrix}1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{pmatrix}+b\begin{pmatrix}0 \\ -1 \\ 1 \\ -4 \\ 1 \\ 0 \\ 0 \end{pmatrix}+c\begin{pmatrix} 0 \\ -1 \\ 3 \\ -2 \\ 0 \\ -3 \\ 1 \end{pmatrix}=\begin{pmatrix}a \\ -b- c \\ a+ b+ 3c \\ -4b- 2c \\ b \\ -3c \\ c\end{pmatrix}= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.

That gives 7 equations: a= 0, -b- c= 0, a+ b+ 3c= 0, -4b- 2c= 0, b= 0, -3c= 0, c= 0. Clearly the only a, b, and c that satisfy all 7 equations are a= b= c= 0. Therefore the three vectors are independent.
 
Last edited:
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K