valenumr
- 469
- 193
Well, for sure you can have functions that just don't work well with basic numerical approaches. If it is something high frequency, for example, and you try to compute a derivative that should be at a maxima or minima, it won't work well with a standard approach, but might be better with a +/- dh. But I think that really is a more fundamental problem of scale and numerical accuracy in the simulation. I think it's reasonable (I haven't gotten deep on the math too much) that the extra error term (say h²) in a quadratic gets erased doing it this way, but in a lot of cases, this term will be much smaller than f(x) to the point that it is outside of machine precision. Obviously not always. But if it does become problem I don't think the method of taking the derivative is the issue. It would be better to scale the function appropriately if at all possible to get more accurate results.mgeorge001 said:I think it is important to see the proposed formula more in light of classical "macroscopics", i.e. not trying to get at the highly accurate microscopic detail. I personally do not know whether the formula is of much use or not. We see the same "classical" problem of "loss of scale" that can haunt Newton's method for finding zeros. I only meant to point out that the proposal has some appeal in a "big picture" way. It is worth bearing in mind that classical Maxwell theory had to give way to quantum mechanics as ways of addressing microscopic behaviors became more relevant and accessible. But I don't think that implies "lack of utility" as there are instances where we want this sort of picture, and as we well know, Newton's method works pretty nicely in lots of cases despite grievous deficiencies.