I Numerical Solution of Complex Systems in GR

epovo
Messages
114
Reaction score
21
TL;DR Summary
If we could solve the EFE's for a given stress-energy configuration, the LHS of the equation would represent the whole history of the system
Please help me confirm that I understand this correctly.
Imagine a system comprised of two black holes orbiting each other, which will eventually merge. At any point in time we describe the stress-energy tensor of the system. Assume that we could solve the EFE's for every point (t,x,y,z). This solution would contain the whole future (and past) evolution of the system, including the merge.
It is my understanding that this is not really possible, so we have to do the following: we take ##T_{\alpha\beta}(t_0)## and solve numerically for ##G_{\alpha\beta}(t_0)##. Then we compute how ##T_{\alpha\beta}## changes in a short period Δt, in which the configuration of mass and energy follow whatever geodesics are there, obtaining ##T_{\alpha\beta}(t_0+\Delta t)##. Now we do it again, giving us ##G_{\alpha\beta}(t_0+\Delta t)##
Is this how numerical methods work, in essence?
 
Physics news on Phys.org
That sounds like you're trying to describe GR as an initial value problem. You specify the stress-energy tensor and metric on a Cauchy surface, which is to say an acausal surface that spans the causal past or future of all events (so "all of space at one time"), and then solve the field equations with those boundary conditions. It's certainly possible to do that (and the ADM formalism is well-adapted to it), but it isn't the only way to do things.
 
Thank you @Ibix - where can I learn more about this topic? The description I gave is the only way I could come up with
 
Ibix said:
That sounds like you're trying to describe GR as an initial value problem. You specify the stress-energy tensor and metric on a Cauchy surface, which is to say an acausal surface that spans the causal past or future of all events (so "all of space at one time"), and then solve the field equations with those boundary conditions. It's certainly possible to do that (and the ADM formalism is well-adapted to it), but it isn't the only way to do things.
You also need the second fundamental form.
 
martinbn said:
You also need the second fundamental form.
I don't even know what that is :frown:
 
epovo said:
Thank you @Ibix - where can I learn more about this topic? The description I gave is the only way I could come up with
I read about it in Wald, and I need to revisit it, apparently.

I think the second fundamental form describes how the Cauchy surface is embedded in the spacetime, but I might be wrong about that.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top