A Numerically solving Scalar field coupled to Friedman equation

AI Thread Summary
The discussion centers on numerically solving the Friedmann equation coupled to a scalar field, as detailed in the research paper by Sean Carroll and colleagues. The author, a physics graduate student, seeks assistance due to a lack of understanding and urgency to complete their degree. A response from one of the paper's authors clarifies that while the problem is standard, it requires careful rescaling of parameters and emphasizes that only equations 5 and 14 need to be solved together, as others are redundant. The author suggests using Mathematica for the numerical solution and provides a resource for further guidance. This exchange highlights the challenges of tackling complex equations in theoretical physics.
Soony143
Messages
3
Reaction score
1
TL;DR Summary
I am a research student of MS PHYSICS. I have to numerically solve Friedman equation coupled to scalar field(phi). It is given in research paper of Sean Carroll, Mark Trodden and Hoffman entitled as ""can the dark energy equation of state parameter w be less than-1?"" http://dx.doi.org/10.1103/PhysRevD.68.023509
The equations, that can be used are equation 5 and 14.
Plz someone help me, since it took me two extra semesters and I am on a verge of losing my degree, as per university policy.
I am a research student of MS PHYSICS. I have to numerically solve Friedman equation coupled to scalar field(phi). It is given in research paper of Sean Carroll, Mark Trodden and Hoffman entitled as ""can the dark energy equation of state parameter w be less than-1?"" http://dx.doi.org/10.1103/PhysRevD.68.023509
The equations, that can be used are equation 5 and 14.
Plz someone help me, since it took me two extra semesters and I am on a verge of losing my degree, as per university policy.
 
Space news on Phys.org
I know 0 about this topic, however, I’d start by listing all boundary conditions and all symmetries the problem is expected to have. Every symmetry should allow you to reduce the complexity of the resulting differential equation. Hopefully this will greatly improve your chances for a numerical solution.
 
Will be a kind act.. thanks
 
Following is the reply i received from one of the author of the paper, when I requested him to help me
""""
Hi,
I won’t be able to spend a lot of time on this but your question is not really about our paper. You’re asking about solving the Friedman equation coupled to a scalar field. This is a standard system that many authors have solved numerically It can be done in Mathematica, but one should rescale parameters so that one need not use large dimensionaful parameters like the Planck mass. Furthermore, you need not solve equation all three equations since they are redundant. Solving 5 and 14 together is sufficient.

Typically, the more difficult part of this is the Friedman equation, which is first order. You can find an example of how to approach solving it here
https://web.physics.ucsb.edu/~gravitybook/mathematica.html

You would need to include the scalar equation and solve them simultaneously.
""""
 
https://en.wikipedia.org/wiki/Recombination_(cosmology) Was a matter density right after the decoupling low enough to consider the vacuum as the actual vacuum, and not the medium through which the light propagates with the speed lower than ##({\epsilon_0\mu_0})^{-1/2}##? I'm asking this in context of the calculation of the observable universe radius, where the time integral of the inverse of the scale factor is multiplied by the constant speed of light ##c##.
The formal paper is here. The Rutgers University news has published a story about an image being closely examined at their New Brunswick campus. Here is an excerpt: Computer modeling of the gravitational lens by Keeton and Eid showed that the four visible foreground galaxies causing the gravitational bending couldn’t explain the details of the five-image pattern. Only with the addition of a large, invisible mass, in this case, a dark matter halo, could the model match the observations...
Hi, I’m pretty new to cosmology and I’m trying to get my head around the Big Bang and the potential infinite extent of the universe as a whole. There’s lots of misleading info out there but this forum and a few others have helped me and I just wanted to check I have the right idea. The Big Bang was the creation of space and time. At this instant t=0 space was infinite in size but the scale factor was zero. I’m picturing it (hopefully correctly) like an excel spreadsheet with infinite...
Back
Top