MHB Object Oscillation & Spring Shortening: Find the Answer!

Click For Summary
The discussion revolves around calculating how much a spring shortens when a 6.2 kg object is removed, given a spring constant (K) of 2755 N/m and an oscillation period of 0.3 seconds. Participants clarify that the relevant formula for a mass on a spring is ω = √(K/m), and they emphasize the balance between the elastic force (F_e = Ky) and gravitational force (F_G = mg) when the mass is at rest. Upon removing the mass, the spring returns to its neutral position, indicating that the displacement (y) where the mass was at rest corresponds to the spring's stretch under the weight of the object. The discussion highlights the importance of understanding the forces at play and the correct application of formulas to find the spring's shortening. The final conclusion is that the spring will return to its original length of y = 0 after the mass is removed.
leprofece
Messages
239
Reaction score
0
1 object of 6.2 Kg hangs 1 balance of spring mass and performs an oscillation of each 0.3 sec If K = 2755 n/m?
How much shortens the spring by removing the object?
Use pi ^ 2 as 10
 
Mathematics news on Phys.org
leprofece said:
1 object of 6.2 Kg hangs 1 balance of spring mass and performs an oscillation of each 0.3 sec If K = 2755 n/m?
How much shortens the spring by removing the object?
Use pi ^ 2 as 10

Can you add some thoughts please?
Perhaps some relevant equations?
 
I like Serena said:
Can you add some thoughts please?
Perhaps some relevant equations?

maybe w= 2pi/t
w= 6,28/0,3

I tried (2pi)sqrt(L/g) solve to L But I don't get the 0.022 m that is the book answer

it could be get the aceleration to get the force
to try f = Kx

SO CAN anybody help me?
 
Last edited:
leprofece said:
maybe w= 2pi/t
w= 6,28/0,3

I tried (2pi)sqrt(L/g) solve to L But I don't get the 0.022 m that is the book answer

I'm afraid that is the formula for a pendulum with length L.
The formula for a mass on a spring is
$$\omega = \sqrt{\frac K m}$$

For this problem we won't need it though.
It appears you have more information than you need.
it could be get the aceleration to get the force
to try f = Kx

Good!
Let's pick $y$ for the coordinate though, to emphasize it's a vertical coordinate.
So we have an elastic force $F_e$:
$$F_e = Ky$$
And we also have the force of gravity.
$$F_G = mg$$

When the mass is at rest, the elastic force and the force of gravity have to be equal and opposite.
That is:
$$F_e = F_G$$
$$Ky = mg$$

Now if we remove the mass from the spring, the spring will return to its neutral position at $y=0$.
What can you conclude then about the $y$ where the mass was at rest before?
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

Replies
11
Views
2K
Replies
17
Views
2K
Replies
1
Views
993
Replies
9
Views
2K
Replies
27
Views
4K
Replies
3
Views
1K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K