MHB *oblique asymptotes of radical expressions

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
it seems most oblique asymptotes are mostly with rational expressions but
$\sqrt{x^2+6x}$ has the asymptote of $y=x+3$ and $y=-x-3$
I don't know how this is derived since it is not a rational expression

thanks ahead:cool:
 
Mathematics news on Phys.org
karush said:
it seems most oblique asymptotes are mostly with rational expressions but
$\sqrt{x^2+6x}$ has the asymptote of $y=x+3$ and $y=-x-3$
I don't know how this is derived since it is not a rational expression

thanks ahead:cool:

For large \(x\) we have the asymtotic behavior: \[\sqrt{x^2+6x} \sim \sqrt{x^2+6x+9}=\pm (x+3)\]
Note deliberate error of use of the \(\pm\) sign, a square root is by definition positive, so as \(x \to +\infty,\ \sqrt{x^2+6x} \sim x+3\), and \(x \to -\infty,\ \sqrt{x^2+6x} \sim -(x+3)\). See plot below.

View attachment 430

CB
 

Attachments

  • plot.PNG
    plot.PNG
    3.6 KB · Views: 89
Last edited:
karush said:
it seems most oblique asymptotes are mostly with rational expressions but
$\sqrt{x^2+6x}$ has the asymptote of $y=x+3$ and $y=-x-3$
I don't know how this is derived since it is not a rational expression

thanks ahead:cool:

As usual, you can proceed by studying the difference $f(x)-(ax+b)$ since you've got that information. For calculus, you would then use the conjuguated expression.

For $x>0$:
$\sqrt{x^2+6x}-x-3=\frac{(\sqrt{x^2+6x}-x-3)(\sqrt{x^2+6x}+x+3)}{\sqrt{x^2+6x}+x+3}=\frac{x^2+6x-(x+3)^2}{\sqrt{x^2+6x}+x+3)}=\frac{-9}{\sqrt{x^2+6x}+x+3)}$
therefore $\lim_{x->+\infty}{f(x)-x-3}=0$
you can even deduce from above that the curve is under the asymptote ($f(x)-(ax+b) < 0 $)
 
Hello, karush!

It seems most oblique asymptotes are mostly with rational expressions,
but $y \:=\:\sqrt{x^2+6x}$ has the asymptotes $y=x+3$ and $y=-x-3$
I don't know how this is derived since it is not a rational expression.
We have: .$y \:=\:\sqrt{x^2+6x} $

Square both sides: .$y^2 \:=\:x^2+6x \quad\Rightarrow\quad x^2 + 6x - y^2 \:=\:0 $

Complete the square: .$x^2 + 6x \color{red}{+ 9} - y^2 \:=\:0 \color{red}{+9} \quad\Rightarrow\quad (x+3)^2 - y^2 \:=\:9 $

Divide by 9: .$\dfrac{(x+3)^2}{9} - \dfrac{y^2}{9} \:=\:1$The graph is the upper half of this hyperbola,

. . whose asymptotes are: $y \:=\:\pm(x+3)$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
3
Views
1K
Replies
20
Views
2K
Replies
2
Views
1K
Replies
3
Views
2K
Replies
4
Views
5K
Replies
22
Views
2K
Back
Top