Observers sending signals to measure expansion

Click For Summary
SUMMARY

The current expansion rate of the universe is 73.3 km/s/Mpc, indicating that the expansion speed increases with distance. Observers must be at least 1 Mpc apart in a region of average matter and energy density to accurately measure this expansion through signal delays. Local gravitational effects prevent the observation of expansion in bound systems like galaxies or clusters. Cosmological behavior emerges at large scales and does not manifest in smaller regions, such as voids, which lack the necessary curvature characteristics for expansion observation.

PREREQUISITES
  • Understanding of Hubble's Law and cosmological expansion
  • Familiarity with the concept of Mpc (megaparsec) as a distance measurement
  • Knowledge of general relativity and curvature types (Ricci and Weyl)
  • Basic grasp of cosmological redshift and its implications
NEXT STEPS
  • Research the implications of the Hubble flow on cosmic expansion
  • Study the differences between Ricci and Weyl curvature in cosmology
  • Explore the role of the cosmological constant in general relativity
  • Investigate the effects of gravitational binding on cosmic structures
USEFUL FOR

Astronomers, cosmologists, and physics students interested in the dynamics of cosmic expansion and the large-scale structure of the universe.

BWV
Messages
1,612
Reaction score
1,965
TL;DR
Help me understand expansion rate
Googling you find a current expansion rate of ~70 km/s or 0.0002C but of course we don't observe this with objects in the solar system as local gravity prevents this expansion - otherwise a distances would increase by a light second roughly every 71 minutes (maybe I’m missing some here conceptually?)

question is - how far apart would to observers sending signals to one another need to be in order to observe expansion? (assuming they could wait however long it took to send and receive the signal) - between here and Andromeda (after accounting for the trajectories of the two galaxies) or farther?

what about two observers floating in some intergalactic void - could they observe expansion at relatively small distances?
 
Space news on Phys.org
BWV said:
Googling you find a current expansion rate of ~70 km/s
This is not correct. You have specified a SPEED, not an expansion rate. The expansion rate is 73.3 km/s/Mpc. That is, the expansion SPEED is a function of distance. At 1 Mpc, it IS 73.3km/s but at 2Mpc it's 146.6km/s and at 3Mpc ... etc.

Also, whether or not expansion is happening in a given area of space is a function of what's IN that space. For bound systems, whether very large galactic clusters or a single non-clustered galaxy, it doesn't happen inside the cluster or galaxy but how far away it starts to occur will depend on how close something has to be to still be bound to the galaxy or the cluster.

SO ... there is no hard and fast numerical answer to your question.
 
  • Informative
Likes   Reactions: BWV
thanks - so simply per above 2 observers 1 mpc apart floating in a much larger intergalactic void would observe their signals taking longer to send and receive proportional to space expanding at 73 km/s and the 6.5 million years for the round-trip signal?
 
BWV said:
thanks - so simply per above 2 observers 1 mpc apart floating in a much larger intergalactic void would observe their signals taking longer to send and receive proportional to space expanding at 73 km/s and the 6.5 million years for the round-trip signal?
I believe so, yes.
 
  • Like
Likes   Reactions: BWV
BWV said:
thanks - so simply per above 2 observers 1 mpc apart floating in a much larger intergalactic void would observe their signals taking longer to send and receive proportional to space expanding at 73 km/s and the 6.5 million years for the round-trip signal?
Actually, a void isn't what you would want to observe this. A void would not be governed by the overall universe geometry (aside: advanced technical terms: the void would have pure Weyl curvature, while the FLRW geometry is pure Ricci curvature. Expansion is a feature of Ricci curvature and initial conditions. Ricci curvature requires a distribution of matter and/or energy). What you would want is a is large enough region to be not gravitationally bound, with average matter and energy density similar to the universe as a whole. And you would want the initial state of the observers to be not just any free fall trajectory, but ones consistent with the so called Hubble flow. Then you should observe the effect you describe.

What also might work is a 1 Mpc region filled with average matter/energy density embedded in a 'typical' region between galactic clusters. But I'm not sure this would really work if the region around this 1 mpc region is of substantially below average matter/energy density. So the only sure fire case is as above - effectively a typical region larger than a galactic cluster.

[edit: sorry, this is not really a B level answer, but I can find no simpler way to describe it without being substantially inaccurate]
 
Last edited:
  • Like
Likes   Reactions: PeterDonis, berkeman, phinds and 1 other person
A perhaps useful analogy is the think about the surface of a golf ball. The general features of the cosmology (cosmological redshift, Hubble 'constant', expansion etc.) correspond to the overall average spherical geometry of the golf ball surface. This overall spherical character is irrelevant to the geometry of a region of a few dimples. Thus, cosmological behavior simply doesn't exist at smaller scales. And, stretching the analogy a bit, a void would be like taking a slice off a bit of the golf ball, leaving a flat region. This would thus have none of the overall spherical large scale average geometry.

Summary: cosmological behavior is large scale emergent behavior. It has no small scale consequences at all (contrary to a great many misleading suggestions that it does).

[edit: I forgot one key exception: the cosmological constant. To the extent that GR with a cosmological constant is correct, the cosmological constant influences behavior at all scales. However, this has nothing to do with applying the scale factor in FLRW metric at local scales, or even applying large scale curvature locally. It does mean, in principle, that orbits should be calculated using the cosmological constant version of Schwarzschild geometry. The effects of this, of course, are many many orders of magnitude less than what is observable, so no one does this. Recall how small the cosmological constant is for our universe in the reference model. ]
 
Last edited:
  • Like
Likes   Reactions: phinds and BWV

Similar threads

  • · Replies 23 ·
Replies
23
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 53 ·
2
Replies
53
Views
6K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 28 ·
Replies
28
Views
2K
Replies
8
Views
3K
Replies
10
Views
8K
  • · Replies 2 ·
Replies
2
Views
3K