(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

You are given that two solutions to the homogeneous Euler-Cauchy equation

[itex]x^2 \frac{d^2}{dx^2}y(x) - 5x \frac{d}{dx} y(x) + 5y(x) = 0[/itex]

[itex]y1=x, y2=x^5[/itex]

[itex]y''-\frac{5}{x}y'+\frac{5}{x^2}y=-\frac{49}{x^4}[/itex]

changing the equation to standard form

use variation of parameters to find a particular solution to the inhomogenous Euler-Cauchy equation

2. Relevant equations

Wronskian

[itex]W=4x^5 [/itex]

yp (y particular)

[tex]yp=uy1+vy2 [/tex]

[tex]u= \frac{-49}{12x^3} [/tex]

3. The attempt at a solution

[itex]v' = \frac{y1r}{w} [/itex]

[itex]v' = \frac{(x) (-49/x^4)}{4x^5} [/itex]

[itex]v' = -\frac{49}{4x^8}[/itex]

[itex]v = -\frac{49}{4} \int \frac{1}{x^8} [/itex]

[itex]v = (-\frac{49}{4}) (-\frac{1}{7x^7}) [/itex]

[itex]v = \frac{49}{28x^7}[/itex]

[itex]yp = \frac{-49}{12x^3}*x + \frac{49}{28x^7}*x^5[/itex]

[itex]yp = \frac{-49}{12x^2} + \frac{49}{28x^2}[/itex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# ODE using variation of parameters

**Physics Forums | Science Articles, Homework Help, Discussion**