Hi, All:(adsbygoogle = window.adsbygoogle || []).push({});

Just curious:

Rudin defines order in his "Baby Rudin" book ; an order relation < in a set S, as a relation* satisfying, for any x,y,z on S:

1) Either x<y , y<x , or y=x

2)If x<y and y<z , then x<z , i.e., transitivity.

Just curious: why is Rudin only considering only total orders in his book? Isn't the partial-order relation of "is a subset of" (among others) important-enough to allow for partial orders?

* Rudin never formally-defined relation, just in case, tho let's assume a relation

on S is a subset of SxS with the above properties.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Ohda!: Definition of Order in Baby Rudin

**Physics Forums | Science Articles, Homework Help, Discussion**