On the definition of radius of convergence; a small supremum technicality

Click For Summary

Homework Help Overview

The discussion revolves around the definition of the radius of convergence for power series, specifically focusing on the implications of the supremum of the set of points where the series converges. Participants are examining the conditions under which the series converges and the correctness of certain inequalities related to the supremum.

Discussion Character

  • Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants explore the definition of the supremum and its implications for convergence, questioning the correctness of stating inequalities involving the radius of convergence. There is discussion about whether the set of convergence points forms an interval and how to demonstrate this.

Discussion Status

The discussion is ongoing, with participants providing clarifications and exploring different interpretations of the definitions involved. Some guidance has been offered regarding the relationship between the supremum and convergence, but no consensus has been reached on the necessity of certain steps in the reasoning.

Contextual Notes

There is uncertainty regarding the completeness of the definition of the supremum and whether the set of convergence points can be assumed to be an interval without further proof. Participants are also considering the implications of various inequalities in the context of convergence.

schniefen
Messages
177
Reaction score
4
Homework Statement
I have a question about a definition of the radius of convergence, in particular about a small detail regarding a property of the supremum.
Relevant Equations
If ##M=\sup (A)##, then for every ##M'<M##, there exists an ##x\in A## such that ##x>M'##.
I am reading the following passage in these lecture notes (chapter 10, in the proof of theorem 10.3) on power series (and have seen similar statements in other texts):

Let $$R=\sup \left\{\left|x\right|\ge 0:\sum a_nx^n \text{ converges}\right\}.$$ If ##R=0##, then the series converges only for ##x=0##. If ##R>0##, then the series converges absolutely for every ##x\in \mathbb R## with ##|x|<R##, since it converges for some ##x_0\in\mathbb R## with ##|x|<|x_0|<R##.

I'm confused about ##|x_0|<R##.

If ##M=\sup (A)##, then for every ##M'<M##, there exists an ##x\in A## such that ##x>M'##. Then, using the definition of an upper bound (in e.g. Spivak's Calculus), it follows that ##M'<x\color{red}{\leq} M##. Suppose ##A=\{1,2,3\}##, then ##2.8<3##, but stating ##2.8<3<3## would be incorrect.

Why is it correct then to state ##|x_0|<R## in this case?
 
Physics news on Phys.org
You are right, it should be ##|x|<|x_0|\le R##.
 
  • Like
Likes   Reactions: schniefen
Your definition of sup is not complete:
##M=\sup A\Longleftrightarrow##
1) ##x\in A\Rightarrow x\le M##
2) for any ##M'<M## it follows that there exists ##x\in A## such that ##x>M'##
 
  • Like
Likes   Reactions: schniefen
I thought maybe the statement ##|x|<|x_0|< R## is not incorrect after all if the set $$\left\{\left|x\right|\ge 0:\sum a_nx^n \text{ converges}\right\}$$ is an interval, but this is not something we know a priori. Besides I am really not sure how to show the set is an interval -- probably requires a definition of what an interval is. Anyway, this seems far-fetched and I lean towards a typo, though I have seen this stated in other texts as well (see for instance A First Course in Mathematical Analysis by Brannan, chapter 8, section 8.3).
 
schniefen said:
Why is it correct then to state ##|x_0|<R## in this case?
You can go directly from the statement for ##|x_0| \le R## to ##\exists x_1 : |x| \lt |x_1| \lt |x_0| \le R## to ##|x| \lt |x_1| \lt R##.
 
  • Like
Likes   Reactions: schniefen
FactChecker said:
You can go directly from the statement for ##|x_0| \le R## to ##\exists x_1 : |x| \lt |x_1| \lt |x_0| \le R## to ##|x| \lt |x_1| \lt R##.
Not directly, but by proving that the series is convergent at ##x_1##. That is not a problem, just a redundant step.

upd

schniefen said:
Besides I am really not sure how to show the set is an interval
Theorem. If the series is convergent at ##x'## then it is convergent in the interval ##\{|x|<|x'|\}##. (It is an interval in ##\mathbb{R}## and a circle if we consider ##\mathbb{C}##)

This theorem is proved in any textbook where power series are discussed. Find it.
 
Last edited:
  • Like
Likes   Reactions: PeroK, FactChecker and schniefen
Ok, I think this clarified it. Thanks a lot!

To summarize; by the definition of the supremum, we have ##|x| \lt |x_0| \leq R##. Now, ##\sum a_nx^n## converges for ##x=x_0## and so for all ##x\in\mathbb R## with ##|x|<|x_0|##. As @FactChecker pointed out, we can find an ##|x_1|## such that ##|x|<|x_1|<|x_0|## and we are done.
 
schniefen said:
Ok, I think this clarified it. Thanks a lot!

To summarize; by the definition of the supremum, we have ##|x| \lt |x_0| \leq R##. Now, ##\sum a_nx^n## converges for ##x=x_0## and so for all ##x\in\mathbb R## with ##|x|<|x_0|##. As @FactChecker pointed out, we can find an ##|x_1|## such that ##|x|<|x_1|<|x_0|## and we are done.
Yes. But as @wrobel pointed out above, there is no point in doing this. Using ##\le## as you originally suggested is more directly derived from the definitions.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K