On the origin and the evolution of information in the Universe

AI Thread Summary
The discussion focuses on the origin and evolution of information in the universe, particularly in the context of quantum mechanics. It emphasizes that quantum information is conserved in closed systems but becomes accessible through irreversible interactions, leading to an increase in emergent classical information. This process is governed by principles such as Shannon's Information Theory and the Landauer Principle, which relate information to thermodynamic entropy. The conversation also explores the idea that information may be physical and linked to mass-energy, as suggested by quantum experiments. Overall, the complexity of information in the universe is seen to increase initially, peak, and then decline over time, raising questions about the definitions and distinctions between information, knowledge, and entropy.
Rene Kail
Messages
9
Reaction score
0
[Mentor Note -- thread moved from the schoolwork forums to the technical forums]

Homework Statement:: Tentative Note and summary on the origin and the evolution of information in the universe.
Relevant Equations:: none

As a teacher of physics I got many questions asked by my students when aboarding the subject of information in quantum mechanics and the content of information in the universe. Based on my reading of articles and papers and participating in blogs (including the PF-Blog) I wrote down the following tentative summary about this topic. Please can you as a specialist who knows details about this subject check if my statements are correct and/or if you need to improve the text. My aim is to forward this summary to my students.

Tentative Note on the origin and the evolution of information in the universe.

In a closed quantum system the quantum information is conserved (in Hilbert space) according to the unitarity principle and conformal to the Liouville Theorem. As soon as an irreversible interaction or transition occurs, ie a measurement or a computation operation is made on the system, or if a decoherence process sets in, the hidden quantum information is extracted and spread out to the outside macroscopic world.

In information communication/transmission systems, the information acquired through info processing is evaluated by Shannon's Information Theory, ie by his formula for the Information Entropy H(X) as a sum of probabilities, where H(X) is a measure of uncertainty or of "hidden Information" in the system.

The amount of emergent (classical) information increases locally and becomes available as knowledge to an observer according to the probabilistic Born Rule and at the cost of local thermodynamic entropy increase according to the Landauer Principle. As the emergent information gets entangled with the environment the increasing correlations result in a degradation of the information in the universe with time.

Or one could say that the information is still there in a different form, but is no longer accessible to observers. As a result the complexity in the universe first increases, attains a maximum and then decreases with time. Thus quantum information must have already existed at the Big Bang, and could have been generated by the decay of the inflaton at the end of the inflation era, when due to reheating, the huge thermodynamic entropy of cosmic radiation was released. Prior to this, near the Planck time in the quantum spacetime nugget, thermodynamic and gravitational entropy were very small (Past Hypothesis) and (quantum-gravitationally) the info content could have been minimal too.

A still open question is the conjecture by some recent authors that the info bit is physical, ie is equivalent to a very small mass-energy. Quantum mechanical experiments seem to point in this direction: quantum Szilard engine, fluctuation theorem, reversible dynamics.
 
Last edited by a moderator:
Space news on Phys.org
That's pretty good. However, it is easy to stumble without a very good definition of information, and distinction between information, knowledge and entropy.

For a macro example, consider a 64GB hard disc. It holds 64GB of information if all the bits are zero, or all one, or if the disc stores a copy of the library of Congress. The information content is invariant. However, the Shannon information, depends entirely on the bit patterns. So there must be multiple definitions of information at play.

My PF Insights article delves into the many ways to define information in physics.
https://www.physicsforums.com/insights/how-to-better-define-information-in-physics/

Here's a difficult case: particle decay. How could we do an information balance on this? Information in equals information out.
1661512372376.png
 
https://en.wikipedia.org/wiki/Recombination_(cosmology) Was a matter density right after the decoupling low enough to consider the vacuum as the actual vacuum, and not the medium through which the light propagates with the speed lower than ##({\epsilon_0\mu_0})^{-1/2}##? I'm asking this in context of the calculation of the observable universe radius, where the time integral of the inverse of the scale factor is multiplied by the constant speed of light ##c##.
The formal paper is here. The Rutgers University news has published a story about an image being closely examined at their New Brunswick campus. Here is an excerpt: Computer modeling of the gravitational lens by Keeton and Eid showed that the four visible foreground galaxies causing the gravitational bending couldn’t explain the details of the five-image pattern. Only with the addition of a large, invisible mass, in this case, a dark matter halo, could the model match the observations...
Hi, I’m pretty new to cosmology and I’m trying to get my head around the Big Bang and the potential infinite extent of the universe as a whole. There’s lots of misleading info out there but this forum and a few others have helped me and I just wanted to check I have the right idea. The Big Bang was the creation of space and time. At this instant t=0 space was infinite in size but the scale factor was zero. I’m picturing it (hopefully correctly) like an excel spreadsheet with infinite...
Back
Top