Operator with 3 degenerate orthonormal eigenstates

Celso
Messages
33
Reaction score
1
Homework Statement
I've been given an operator ##\hat{A}## that has 3 orthonormal vectors as degenerate eigenstates corresponding to the same eigenvalue ##a##.

I know how the hamiltonian acts on these vectors and I want to use this information to check whether ##\hat{H}## and ##\hat{A}## commute or not.
Relevant Equations
## \hat{A} |1> a|1>, \hat{A} |2> a|2>, \hat{A} |3> a|3>##
##\hat{H} = \begin{bmatrix} \sigma & 0 & \sigma \\ 0 & \sigma & \delta \\ \sigma & \delta & \sigma \end{bmatrix} ##
With this information I concluded that the diagonal elements of ##\hat{A}## are equal to the eigenvalue ##a##, so ##\hat{A} = \begin{bmatrix} a & A_{12} & A_{13} \\ A_{21}& a & A_{23}\\A_{31} & A_{32} & a \end{bmatrix}## but I can't see how to go from this to the commuting relation, since I don't know the other terms.
 
Physics news on Phys.org
Can you show that any normalized linear combination of the three orthonormal vectors is also an eigenstate of ##\hat A## with eigenvalue ##a##? If you can, what does this have to do with the question being asked here?
 
  • Informative
Likes Keith_McClary
Celso said:
Relevant Equations:: ## \hat{A} |1> a|1>, \hat{A} |2> a|2>, \hat{A} |3> a|3>##

With this information I concluded that the diagonal elements of ##\hat{A}## are equal to the eigenvalue ##a##, so ##\hat{A} = \begin{bmatrix} a & A_{12} & A_{13} \\ A_{21}& a & A_{23}\\A_{31} & A_{32} & a \end{bmatrix}## but I can't see how to go from this to the commuting relation, since I don't know the other terms.
Note that your relevant equations say ##\hat{A} |n\rangle = a|n\rangle##, not ##\langle n \lvert \hat{A} \rvert n \rangle = a##.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...

Similar threads

Back
Top