Operator with 3 degenerate orthonormal eigenstates

Celso
Messages
33
Reaction score
1
Homework Statement
I've been given an operator ##\hat{A}## that has 3 orthonormal vectors as degenerate eigenstates corresponding to the same eigenvalue ##a##.

I know how the hamiltonian acts on these vectors and I want to use this information to check whether ##\hat{H}## and ##\hat{A}## commute or not.
Relevant Equations
## \hat{A} |1> a|1>, \hat{A} |2> a|2>, \hat{A} |3> a|3>##
##\hat{H} = \begin{bmatrix} \sigma & 0 & \sigma \\ 0 & \sigma & \delta \\ \sigma & \delta & \sigma \end{bmatrix} ##
With this information I concluded that the diagonal elements of ##\hat{A}## are equal to the eigenvalue ##a##, so ##\hat{A} = \begin{bmatrix} a & A_{12} & A_{13} \\ A_{21}& a & A_{23}\\A_{31} & A_{32} & a \end{bmatrix}## but I can't see how to go from this to the commuting relation, since I don't know the other terms.
 
Physics news on Phys.org
Can you show that any normalized linear combination of the three orthonormal vectors is also an eigenstate of ##\hat A## with eigenvalue ##a##? If you can, what does this have to do with the question being asked here?
 
  • Informative
Likes Keith_McClary
Celso said:
Relevant Equations:: ## \hat{A} |1> a|1>, \hat{A} |2> a|2>, \hat{A} |3> a|3>##

With this information I concluded that the diagonal elements of ##\hat{A}## are equal to the eigenvalue ##a##, so ##\hat{A} = \begin{bmatrix} a & A_{12} & A_{13} \\ A_{21}& a & A_{23}\\A_{31} & A_{32} & a \end{bmatrix}## but I can't see how to go from this to the commuting relation, since I don't know the other terms.
Note that your relevant equations say ##\hat{A} |n\rangle = a|n\rangle##, not ##\langle n \lvert \hat{A} \rvert n \rangle = a##.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...

Similar threads

Back
Top