Operator with 3 degenerate orthonormal eigenstates

Click For Summary
The diagonal elements of the operator ##\hat{A}## are confirmed to equal the eigenvalue ##a##, leading to the matrix representation of ##\hat{A}##. The discussion highlights a challenge in deriving the commuting relation due to uncertainty about the off-diagonal terms. It is suggested that any normalized linear combination of the three orthonormal eigenstates remains an eigenstate of ##\hat{A}## with eigenvalue ##a##. Clarification is provided that the relevant equations pertain to the action of ##\hat{A}## on the eigenstates, not their inner products. Understanding these relationships is crucial for addressing the original question posed.
Celso
Messages
33
Reaction score
1
Homework Statement
I've been given an operator ##\hat{A}## that has 3 orthonormal vectors as degenerate eigenstates corresponding to the same eigenvalue ##a##.

I know how the hamiltonian acts on these vectors and I want to use this information to check whether ##\hat{H}## and ##\hat{A}## commute or not.
Relevant Equations
## \hat{A} |1> a|1>, \hat{A} |2> a|2>, \hat{A} |3> a|3>##
##\hat{H} = \begin{bmatrix} \sigma & 0 & \sigma \\ 0 & \sigma & \delta \\ \sigma & \delta & \sigma \end{bmatrix} ##
With this information I concluded that the diagonal elements of ##\hat{A}## are equal to the eigenvalue ##a##, so ##\hat{A} = \begin{bmatrix} a & A_{12} & A_{13} \\ A_{21}& a & A_{23}\\A_{31} & A_{32} & a \end{bmatrix}## but I can't see how to go from this to the commuting relation, since I don't know the other terms.
 
Physics news on Phys.org
Can you show that any normalized linear combination of the three orthonormal vectors is also an eigenstate of ##\hat A## with eigenvalue ##a##? If you can, what does this have to do with the question being asked here?
 
  • Informative
Likes Keith_McClary
Celso said:
Relevant Equations:: ## \hat{A} |1> a|1>, \hat{A} |2> a|2>, \hat{A} |3> a|3>##

With this information I concluded that the diagonal elements of ##\hat{A}## are equal to the eigenvalue ##a##, so ##\hat{A} = \begin{bmatrix} a & A_{12} & A_{13} \\ A_{21}& a & A_{23}\\A_{31} & A_{32} & a \end{bmatrix}## but I can't see how to go from this to the commuting relation, since I don't know the other terms.
Note that your relevant equations say ##\hat{A} |n\rangle = a|n\rangle##, not ##\langle n \lvert \hat{A} \rvert n \rangle = a##.
 
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 28 ·
Replies
28
Views
3K
Replies
2
Views
1K