Graduate Orbiting spaceship just above a black hole horizon

Click For Summary
A spaceship cannot achieve a stable orbit just above the horizon of a supermassive black hole, as the closest stable orbit is at a radius of 6M. The photon sphere, located at 3M, allows for unstable orbits, but anything below this radius lacks stable orbital paths. Consequently, if the ship were to decrease its orbit past the horizon, it would not be able to maintain an orbit inside the black hole. The energy required to escape the black hole would not be symmetrical to the energy used to decrease the orbit. Overall, the proposed experiment is not feasible due to the fundamental properties of black hole physics.
AndreiB
Messages
192
Reaction score
33
The experiment I am thinking about is a spaceship that approaches the horizon of a supermassive black hole by firing its engines in the opposite direction of its motion. I have the following questions:

1. When the ship is in a stable orbit, just above the horizon, how would an observer far away from the black hole see it? Would it be stationary (almost) because of time dilation?

2. Is it possible for the ship to further decrease its orbit until it passes through the horizon? Would it continue to orbit inside the black hole?

3. If 2 is possible, why would the ship, by using the same amount of energy as in step 2, be able to raise its orbit again and get out of the black hole? The situation seems to be symmetrical.
 
Physics news on Phys.org
AndreiB said:
The experiment I am thinking about is a spaceship that approaches the horizon of a supermassive black hole by firing its engines in the opposite direction of its motion
This won't work. I suggest reading this Insights article of mine:

https://www.physicsforums.com/insights/centrifugal-force-reversal-near-black-hole/

AndreiB said:
1. When the ship is in a stable orbit, just above the horizon
There are no stable orbits just above the horizon. The closest stable orbit is at ##r = 6M##. The closest circular orbit at all is the photon sphere at ##r = 3M##, but orbits there are unstable.

AndreiB said:
2. Is it possible for the ship to further decrease its orbit until it passes through the horizon? Would it continue to orbit inside the black hole?
Since there aren't any orbits at all inside ##r = 3M##, there certainly aren't inside ##r = 2M##.
 
  • Informative
  • Like
Likes vanhees71 and berkeman
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...

Similar threads

  • · Replies 51 ·
2
Replies
51
Views
4K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 57 ·
2
Replies
57
Views
4K
  • · Replies 40 ·
2
Replies
40
Views
3K
  • · Replies 62 ·
3
Replies
62
Views
7K
  • · Replies 73 ·
3
Replies
73
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 12 ·
Replies
12
Views
5K