MHB Order of product of elements in a group

Arnold1
Messages
16
Reaction score
0
Hello.

I'm just beginning my course in algebra. I've been reading Milne, Group Theory ( http://www.jmilne.org/math/CourseNotes/GT310.pdf page 29).
I've found there a very nice proof of the fact that given two elements in a finite group, we cannot really say very much about their product's order. However, there are some things about the proof I do not quite understand. Namely - the first paragraph. What are the images of elements in $$SL_2(\mathbb{F}_q)/ \{+-I\}$$ and why do we divide the orders of $$a, \ b, \ c$$ by $$2$$?

Is it because the centre($$ \{+-I\} $$) has order $$2$$ and thus by Lagrange's theorem, the order of the quotient group must be two times smaller?I would really appreciate a thorough explanation. Maybe you know a simpler proof of the fact (about the order of product of elements)?Thank you.
 
Physics news on Phys.org
Arnold said:
Hello.

I'm just beginning my course in algebra. I've been reading Milne, Group Theory ( http://www.jmilne.org/math/CourseNotes/GT310.pdf page 29).
I've found there a very nice proof of the fact that given two elements in a finite group, we cannot really say very much about their product's order. However, there are some things about the proof I do not quite understand. Namely - the first paragraph. What are the images of elements in $$SL_2(\mathbb{F}_q)/ \{+-I\}$$ and why do we divide the orders of $$a, \ b, \ c$$ by $$2$$?
If $a$ has order $2m$ then $a^m$ has order $2$. But, as Milne points out, $-I$ is the unique element of order $2$ in $\text{SL}_2(\mathbb{F}_q)$. Therefore $a^m = -I$, so that (the coset of) $a^m$ is the identity element in the quotient group $\text{SL}_2(\mathbb{F}_q)/\{\pm I\}.$ It follows that the image of $a$ has order $m$ in the quotient group.

Thank you for that link! It looks as though Milne's notes are an excellent free online resource for group theory.
 
Last edited:
You're welcome. Thank you for the explanation.
 
Welcome to MHB, Arnold! :)

Arnold said:
What are the images of elements in $$SL_2(\mathbb{F}_q)/ \{+-I\}$$

Let's first start with the elements.
The elements have the form {a,-a}, where $a \in SL_2(\mathbb{F}_q)$, which is a 2x2 matrix with elements from $\mathbb Z/q\mathbb Z$.

There is a so called natural or canonical function $SL_2(\mathbb{F}_q) \to SL_2(\mathbb{F}_q)/ \{\pm I\}$, given by $a \mapsto \{a,-a\}$.
Milne means that the image of an element a is {a,-a}, since a itself is not an element of the quotient group.

why do we divide the orders of $$a, \ b, \ c$$ by $$2$$?

Let's pick an example in $SL_2(F_3)$
$$a=\begin{pmatrix}1 & 1 \\ 1 & 2\end{pmatrix},\ a^2 = \begin{pmatrix}-1 & 0 \\ 0 & -1\end{pmatrix}$$
So $a$ has order 4.
Since $a^2 = -I$ already belongs to the coset $\{\pm I\}$, which is the identity element, the order of {a,-a} is 2.

Is it because the centre($$ \{+-I\} $$) has order $$2$$ and thus by Lagrange's theorem, the order of the quotient group must be two times smaller?

Yes.
 
Hi,
Here's some unsolicited advice. From your question, I don't think you should be studying Milne's monograph yet. Case in point, the theorem in your question. The first assertion is that SL(2,q) with q=pk has a unique element of order 2. I think this requires some proof, which to me is not obvious. Furthermore, the statement is false if p=2 -- If you can easily prove the above, I retract my advice. So my advice to you is to get a good grounding in basic algebra before you go back to Milne.

P.S. In case you can read German, the very old but still very good book Endliche Gruppe I by B. Huppert is a very comprehensive treatment. It is virtually self contained; that is, all necessary facts from other branches of algebra are presented.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top