MHB Orders of elements for rotational symmetries of cube

kalish1
Messages
79
Reaction score
0
I am having lots of trouble doing this problem because I have particularly poor visualization skills. (Or maybe haven't developed them well yet). I would appreciate any help on this math problem.

Here is the question:

Suppose a cube is oriented before you so that from your point of view there is a top face, a bottom face, a front face, a back face, a left face, and a right face. In the group $O$ of rotational symmetries of the cube, let $x$ rotate the top face counterclockwise $90$ degrees, and let $y$ rotate the front face counterclockwise $90$ degrees.

(a) Find $g \in O$ such that $gxg^{-1}=y$ and $g$ has order $4$.
(b) Find $h \in O$ such that $hxh^{-1}=y$ and $h$ has order $3$.
(c) Find $k \in O$ such that $kxk^{-1}=x^{-1}$.

Thanks in advance.
 
Last edited:
Physics news on Phys.org
kalish said:
I am having lots of trouble doing this problem because I have particularly poor visualization skills. (Or maybe haven't developed them well yet). I would appreciate any help on this math problem.

Here is the question:

Suppose a cube is oriented before you so that from your point of view there is a top face, a bottom face, a front face, a back face, a left face, and a right face. In the group $O$ of rotational symmetries of the cube, let $x$ rotate the top face counterclockwise $90$ degrees, and let $y$ rotate the front face counterclockwise $90$ degrees.

(a) Find $g \in O$ such that $gxg^{-1}=y$ and $g$ has order $4$.
(b) Find $h \in O$ such that $hxh^{-1}=y$ and $h$ has order $3$.
(c) Find $k \in O$ such that $kxk^{-1}=x^{-1}$.

Thanks in advance.

Hi kalish!

Do you already have a list of the different rotational symmetries of the cube?
Obviously, g, h, and k have to be one of them.

Did you already make a drawing of a cube and mark x and y in it?

Typically g has to be of the form: turn the front face (that y acts on) somewhere where x can act on it (top face or bottom face), and afterward turn it back again.
This is called a conjugation and it is one of the main tricks to solve puzzles.
Which rotation of the cube will do that?
Can you make a drawing of the result?

If you have difficulty visualizing it, I propose you mark each face of the cube with a letter, say F, B, T, D, L, and R.
And then write a rotational symmetry as a combination of disjoint cycles.
For instance, rotating the top face counter clock wise by 90 degrees is: (F R B L).
That is, front goes to right, right goes to back, back goes to left, and left goes to front.

Are you familiar with applying cycles to each other?
 
Hi *I like Serena*,
I am familiar with permutation cycles and disjoint cycles. I think your hints are well written. I will try to use them. Thanks!
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top