Orientation of Major Axis for polarized light

Click For Summary
SUMMARY

The discussion focuses on the orientation of the major axis for polarized light, specifically addressing two cases of linear and circular polarization. In Case 1, the light is determined to be linearly polarized at an angle of ##\alpha = \frac{\pi}{4}##. In Case 2, the angle ##\alpha## is undefined due to the nature of circularly polarized light, where ##cos(\delta) = cos(\frac{\pi}{2})=0## and ##A = B##. The discussion emphasizes the importance of identifying the handedness of circular polarization, which can be determined using Jones calculus and Euler's equation.

PREREQUISITES
  • Understanding of linear and circular polarization concepts
  • Familiarity with Jones calculus for analyzing polarized light
  • Knowledge of Euler's equation and its application in trigonometric functions
  • Basic principles of light behavior and polarization
NEXT STEPS
  • Study Jones calculus in detail to analyze different polarization states
  • Learn how to apply Euler's equation in the context of light polarization
  • Research methods to determine the handedness of circularly polarized light
  • Explore advanced topics in optics related to polarization and its applications
USEFUL FOR

Optics students, physicists, and engineers working with polarized light, as well as anyone interested in advanced light behavior and polarization analysis.

Blanchdog
Messages
56
Reaction score
22
Homework Statement
Consider the Jones vector: $$\begin{pmatrix}A \\Be^{i \delta}\end{pmatrix}$$ For the following cases, what is the orientation of the major axis, and
what is the ellipticity of the light? Case I: ##A = B = \frac{1}{\sqrt{2}}; \delta = 0;## Case II: ##A = B = \frac{1}{\sqrt{2}}; \delta = \frac{\pi}{2};## Case III: ##A = B = \frac{1}{\sqrt{2}}; \delta = \frac{\pi}{4}##
Relevant Equations
$$\alpha = \frac{1}{2}tan^{-1}(\frac{2 A B cos(\delta)}{A^2-B^2})$$
$$E_{\alpha}=|E_{eff}|\sqrt{A^2 cos^2(\alpha) + B^2 sin^2(\alpha) + 2 A B cos(\delta)sin(2 \alpha)}$$
$$E_{\alpha \pm \frac{pi}{2}}=|E_{eff}|\sqrt{A^2 cos^2(\alpha) + B^2 sin^2(\alpha) - 2 A B cos(\delta)sin(2 \alpha)}$$
Case 1 worked out great, I found it to be linearly polarized light at an angle ##\alpha = \frac{\pi}{4}##, but Case 2 is giving me trouble. As best I can tell, ##\alpha## is undefined in case 2. How do I solve case 2?
 
Physics news on Phys.org
I believe I figured it out, though I would love confirmation. Since ##cos(\delta) = cos(\frac{\pi}{2})=0## and ## A = B##, we end up with ## E_\alpha = E_{\alpha_\pm+\frac{pi}{2}}##. That means we have circularly polarized light! So of course ##\alpha## is undefined; a circle has no determined axes!
 
You are correct. Your professor might also want you to say if it is right-hand or left-hand circular polarized. More information can be found here https://en.wikipedia.org/wiki/Jones_calculus
And you can use euler's equation to make the exponential into trig functions and plug in the angle.
 
stephen8686 said:
You are correct. Your professor might also want you to say if it is right-hand or left-hand circular polarized. More information can be found here https://en.wikipedia.org/wiki/Jones_calculus
And you can use euler's equation to make the exponential into trig functions and plug in the angle.
How can I tell the handedness?
 

Similar threads

  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
6K