Orientation of Major Axis for polarized light

AI Thread Summary
Case 1 successfully demonstrated linearly polarized light at an angle of π/4, while Case 2 presented challenges with an undefined angle α. The conclusion for Case 2 indicates circularly polarized light due to the relationship Eα = Eα±π/2 and the fact that cos(δ) equals zero. It is noted that circular polarization lacks a defined axis, explaining the undefined α. To determine the handedness of the circular polarization, further analysis is required, potentially involving the application of Euler's equation and additional resources like Jones calculus.
Blanchdog
Messages
56
Reaction score
22
Homework Statement
Consider the Jones vector: $$\begin{pmatrix}A \\Be^{i \delta}\end{pmatrix}$$ For the following cases, what is the orientation of the major axis, and
what is the ellipticity of the light? Case I: ##A = B = \frac{1}{\sqrt{2}}; \delta = 0;## Case II: ##A = B = \frac{1}{\sqrt{2}}; \delta = \frac{\pi}{2};## Case III: ##A = B = \frac{1}{\sqrt{2}}; \delta = \frac{\pi}{4}##
Relevant Equations
$$\alpha = \frac{1}{2}tan^{-1}(\frac{2 A B cos(\delta)}{A^2-B^2})$$
$$E_{\alpha}=|E_{eff}|\sqrt{A^2 cos^2(\alpha) + B^2 sin^2(\alpha) + 2 A B cos(\delta)sin(2 \alpha)}$$
$$E_{\alpha \pm \frac{pi}{2}}=|E_{eff}|\sqrt{A^2 cos^2(\alpha) + B^2 sin^2(\alpha) - 2 A B cos(\delta)sin(2 \alpha)}$$
Case 1 worked out great, I found it to be linearly polarized light at an angle ##\alpha = \frac{\pi}{4}##, but Case 2 is giving me trouble. As best I can tell, ##\alpha## is undefined in case 2. How do I solve case 2?
 
Physics news on Phys.org
I believe I figured it out, though I would love confirmation. Since ##cos(\delta) = cos(\frac{\pi}{2})=0## and ## A = B##, we end up with ## E_\alpha = E_{\alpha_\pm+\frac{pi}{2}}##. That means we have circularly polarized light! So of course ##\alpha## is undefined; a circle has no determined axes!
 
You are correct. Your professor might also want you to say if it is right-hand or left-hand circular polarized. More information can be found here https://en.wikipedia.org/wiki/Jones_calculus
And you can use euler's equation to make the exponential into trig functions and plug in the angle.
 
stephen8686 said:
You are correct. Your professor might also want you to say if it is right-hand or left-hand circular polarized. More information can be found here https://en.wikipedia.org/wiki/Jones_calculus
And you can use euler's equation to make the exponential into trig functions and plug in the angle.
How can I tell the handedness?
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top