Polarized light Definition and 9 Discussions

Polarization (also polarisation) is a property applying to transverse waves that specifies the geometrical orientation of the oscillations. In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. A simple example of a polarized transverse wave is vibrations traveling along a taut string (see image); for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string. In contrast, in longitudinal waves, such as sound waves in a liquid or gas, the displacement of the particles in the oscillation is always in the direction of propagation, so these waves do not exhibit polarization. Transverse waves that exhibit polarization include electromagnetic waves such as light and radio waves, gravitational waves, and transverse sound waves (shear waves) in solids.
An electromagnetic wave such as light consists of a coupled oscillating electric field and magnetic field which are always perpendicular to each other; by convention, the "polarization" of electromagnetic waves refers to the direction of the electric field. In linear polarization, the fields oscillate in a single direction. In circular or elliptical polarization, the fields rotate at a constant rate in a plane as the wave travels. The rotation can have two possible directions; if the fields rotate in a right hand sense with respect to the direction of wave travel, it is called right circular polarization, while if the fields rotate in a left hand sense, it is called left circular polarization.
Light or other electromagnetic radiation from many sources, such as the sun, flames, and incandescent lamps, consists of short wave trains with an equal mixture of polarizations; this is called unpolarized light. Polarized light can be produced by passing unpolarized light through a polarizer, which allows waves of only one polarization to pass through. The most common optical materials do not affect the polarization of light, however, some materials—those that exhibit birefringence, dichroism, or optical activity—affect light differently depending on its polarization. Some of these are used to make polarizing filters. Light is also partially polarized when it reflects from a surface.
According to quantum mechanics, electromagnetic waves can also be viewed as streams of particles called photons. When viewed in this way, the polarization of an electromagnetic wave is determined by a quantum mechanical property of photons called their spin. A photon has one of two possible spins: it can either spin in a right hand sense or a left hand sense about its direction of travel. Circularly polarized electromagnetic waves are composed of photons with only one type of spin, either right- or left-hand. Linearly polarized waves consist of photons that are in a superposition of right and left circularly polarized states, with equal amplitude and phases synchronized to give oscillation in a plane.Polarization is an important parameter in areas of science dealing with transverse waves, such as optics, seismology, radio, and microwaves. Especially impacted are technologies such as lasers, wireless and optical fiber telecommunications, and radar.

View More On Wikipedia.org
  1. F

    Effect of a polarizer/analyzer on partially polarized light

    This is problem 62 in Cutnell & Johnson's Physics (9th edition): Suppose that the light falling on the polarizer in the figure is partially polarized (average intensity \bar S_P) and partially upolarized (average intensity \bar S_U). The total incident intensity is \bar S_P+ \bar S_U and the...
  2. F

    I What happens when circular polarization meets a diagonal polarizer?

    I'm finding what seems to be conflicting information on this question and could really use some help. It's my understanding that circularly polarized light is composed of two perpendicular linearly polarized components with a 90 degree phase shift between them. When considered individually...
  3. K

    Polarization of light -- Determine the thickness of the crystal

    I don't even know where to start with this problem. What kind of slit makes linearly polarized light circularly polarized? The correct answer is d = lambda/(4(n1 - n2)) = 856nm. But how do I get there? Thanks in beforehand!
  4. Johnnyallen

    Polarized Light -- Idea for headlight safety

    I've been a semi-pro photographer for a long, long time. I know the value of having a polarizing filter in my camera bag. I also wear polarized sunglasses for driving during the day. You can't beat 'em. I know some people who are complaining about these LED head lights from oncoming cars...
  5. stefan3423

    2 Polarizers attenuating a light beam

    Homework Statement An angle is given between 2 polarizer's (45 degrees), through them light passes (unpolarized than after passing through the first one it polarizes), some of the light its shown on the display. For how much does the angle needs to be increased for the intensity of light to be...
  6. sergiokapone

    Intensity of p-polarized light through stack of plates

    As one know, the intensity Fresnel equations for the reflected p-polarized light \begin{equation}\label{a} \frac{I_{p_{refl}}}{I_{0p}}=\frac {\tan^{2}(i-r)}{{\tan^{2}(i+r)}} \end{equation} and for the refracted one is \begin{equation}\label{b} \frac{I_{p_{refr}}}{I_{0p}}=1 - \frac...
  7. H

    How could 2 crossed fields polarize and deflect EM radiation

    In the 1953 science fiction novel Childhood’s End by Arthur C. Clarke, characters use two crossed fields in outer space to block some of the solar radiation traveling towards earth: “Somehow, out in space, the light of the Sun had been polarized by two crossed fields so that no radiation could...
  8. Lensmonkey

    2 layers of birefringent crystal, how many rays?

    I am trying to solve a problem my camera exhibits. It has a sensor with 6000x3376 pixels. HD video is 1920x1080. In order to reduce the amount of information to the processor the camera throws away 2 out of 3 pixel lines. this creates a problem with thin lines tike telephone lines and makes...
  9. spareine

    Why is the birefringence pattern in a car colorless?

    When looking through polarizing glasses at the rear window of a car (tempered glass), a black and white pattern appears. Supposedly, this is the same kind of birefringence that causes colored fringes in a plastic sheet, seen through a polarizer. It is clear that retardation and interference in...
Top