I Orthogonality of Eigenvectors of Linear Operator and its Adjoint

ughpleasenope
Messages
2
Reaction score
0
Suppose we have V, a finite-dimensional complex vector space with a Hermitian inner product. Let T: V to V be an arbitrary linear operator, and T^* be its adjoint.

I wish to prove that T is diagonalizable iff for every eigenvector v of T, there is an eigenvector u of T^* such that <u, v> is not equal to 0.

I've been thinking about generalized eigenvectors, but have not really gotten anywhere.
 
Physics news on Phys.org
The direction where you assume T is diagonalizable is pretty straightforward I think?

The other direction is not immediately obviously true to me but sounds plausible, I'll sleep on it.
 
  • Like
Likes ughpleasenope
Office_Shredder said:
The direction where you assume T is diagonalizable is pretty straightforward I think?

The other direction is not immediately obviously true to me but sounds plausible, I'll sleep on it.
Would you mind elaborating? I've struggled with this for a while.
 
If T is diagonalizable, then you can write down a basis of V which are all eigenvectors of T.

What kind of basis of ##V^*## do you get from this? (I guess if your class is very matrix based this question might not make sense)
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top