I Orthogonality of Eigenvectors of Linear Operator and its Adjoint

ughpleasenope
Messages
2
Reaction score
0
Suppose we have V, a finite-dimensional complex vector space with a Hermitian inner product. Let T: V to V be an arbitrary linear operator, and T^* be its adjoint.

I wish to prove that T is diagonalizable iff for every eigenvector v of T, there is an eigenvector u of T^* such that <u, v> is not equal to 0.

I've been thinking about generalized eigenvectors, but have not really gotten anywhere.
 
Physics news on Phys.org
The direction where you assume T is diagonalizable is pretty straightforward I think?

The other direction is not immediately obviously true to me but sounds plausible, I'll sleep on it.
 
  • Like
Likes ughpleasenope
Office_Shredder said:
The direction where you assume T is diagonalizable is pretty straightforward I think?

The other direction is not immediately obviously true to me but sounds plausible, I'll sleep on it.
Would you mind elaborating? I've struggled with this for a while.
 
If T is diagonalizable, then you can write down a basis of V which are all eigenvectors of T.

What kind of basis of ##V^*## do you get from this? (I guess if your class is very matrix based this question might not make sense)
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...