Overlap integral of hydrogen molecule

Click For Summary
The discussion revolves around calculating the overlap integral for a hydrogen molecule using specific wavefunctions for the 1s and 2p orbitals. The overlap integral is expressed in terms of spherical coordinates, leading to a complex integral that the user finds challenging to solve. Despite following the textbook's guidance on coordinate transformation, the user encounters discrepancies in the expected solution, particularly a persistent factor of 1/√2. They express frustration over the difficulty of the integral compared to a previous exercise involving two 1s orbitals, which was simpler. The conversation highlights the complexities involved in quantum chemistry calculations and the importance of accurate wavefunction representation.
hicetnunc
Messages
13
Reaction score
5
Homework Statement
Show that the overlap integral of a 1s orbital and a 2p orbital from hydrogen forming a ##\sigma## bond is
$$S = \frac{R}{a_0} \Big[ 1 + \frac{R}{a_0} + \frac{1}{3} \Big( \frac{R}{a_0} \Big)^2 \Big] e^{-R/a_0}$$
where ##R## is the distance between the atoms.
Relevant Equations
None.
Hi! Some help with this problem would be much appreciated.

coordsys.png


The overlap integral is defined as ##S = \int \phi_A (\mathbf{r}_A) \phi_B (\mathbf{r}_B) \,d\mathbf{r}##. For the two orbitals, I have that
$$\phi_A = \frac{1}{\sqrt{\pi}} \Big( \frac{1}{a_0} \Big)^{3/2} e^{-r_A / a_0}$$
for the 1s orbital and
$$\phi_B = \frac{1}{4\sqrt{2\pi}} \Big( \frac{1}{a_0} \Big)^{5/2} \cos \theta r_B e^{-r_B / 2a_0} $$
for the 2p orbital. This would give an overlap integral of
$$S = \frac{1}{4\sqrt{2}\pi} \Big( \frac{1}{a_0} \Big)^4 \int \cos \theta r_B e^{-(r_A+0.5r_B)/a_0} \,d\mathbf{r}$$
Now, the textbook I'm using suggests using spheroidal coordinates ##u=\frac{r_A + r_B}{R}## and ##v=\frac{r_A - r_B}{R}##. Since ##\theta## is the angle between ##r_B## and the z-axis, this gives me ##\cos \theta = \frac{z - R/2}{r_B}## and since ##z=\frac{R}{2}uv## I get ##\cos \theta = \frac{R(uv-1)}{2 r_B}##. The overlap integral is now
$$S = \frac{R}{8\sqrt{2}\pi a_0^4} \int (uv-1) e^{-R(3u-v)/(4a_0)} \,d\mathbf{r}$$
The volume element is ##\frac{R^3}{8}(u^2-v^2)## and the variables ##(u, v, \theta')## have the intervals ##1 \leq u \leq \infty##, ##-1 \leq v \leq 1## and ##0 \leq \theta' \leq 2\pi##.

But I can't get the same solution for this integral as stated in the exercise. Already from the beginning I have a factor of ##1 / \sqrt{2}## that will follow through and not disappear. I've tried solving the integral, but it's a really tedious and long calculation. Do I at least have the right integral?

I've done a similar version of this exercise for a hydrogen molecule with two 1s orbitals, and got the right solution for that. That integral was MUCH easier to solve than this.
 
Physics news on Phys.org
No one seems to have answered this but I think your waveforms are not correct.
 

Similar threads

Replies
7
Views
2K
Replies
29
Views
2K
Replies
6
Views
4K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K