MHB Oxidation Numbers: Fe203+3CO to 2Fe+3CO2

  • Thread starter Thread starter markosheehan
  • Start date Start date
  • Tags Tags
    Numbers Oxidation
AI Thread Summary
In the reaction Fe2O3 + 3CO → 2Fe + 3CO2, iron (Fe) is reduced as it gains electrons, while carbon (C) is oxidized as it loses electrons. The oxidation states are clarified by expressing the ions: Fe3+ and O2- for iron oxide, and C2+ and O2- for carbon monoxide. It is noted that while valency can guide the determination of oxidation numbers, it is not always accurate, as seen with carbon's valency of 4 compared to its oxidation state of +2 in this reaction. Oxygen consistently has an oxidation state of -2 in compounds, and the oxidation number of a compound must equal zero. Understanding these principles is essential for accurately identifying oxidation and reduction in chemical reactions.
markosheehan
Messages
133
Reaction score
0
By using oxidation numbers can someone show me what is oxidised and reduced

Fe203+3co->2Fe+3co2
 
Mathematics news on Phys.org
markosheehan said:
By using oxidation numbers can someone show me what is oxidised and reduced

Fe203+3co->2Fe+3co2

Hi Marko,

Making the ion forms explicit, we have:
$$
{Fe^{3+}}_2{0^{2-}}_3+3C^{2+}O^{2-}\to 2Fe+3C^{4+}{O^{2-}}_2
$$
So $Fe$ gains electrons and as such it is reduced.
And $C$ loses electrons, meaning it is oxidized.
 
I like Serena said:
Hi Marko,

Making the ion forms explicit, we have:
$$
{Fe^{3+}}_2{0^{2-}}_3+3C^{2+}O^{2-}\to 2Fe+3C^{4+}{O^{2-}}_2
$$
So $Fe$ gains electrons and as such it is reduced.
And $C$ loses electrons, meaning it is oxidized.

thanks
I usually go to the periodic table and look at the elements valency and then i take this as the oxidation number. this is not always correct though?
for example carbon has a valency of 4 but in the above equation it is 2+.
so you go off the ones you know like oxygen is always -2 and the oxidation number of a compound must always equal zero.
 
markosheehan said:
thanks
I usually go to the periodic table and look at the elements valency and then i take this as the oxidation number. this is not always correct though?
for example carbon has a valency of 4 but in the above equation it is 2+.
so you go off the ones you know like oxygen is always -2 and the oxidation number of a compound must always equal zero.

Yes, in compounds oxygen is always -2.
The metals (that are oxidized) usually have more than one oxidation number, and the valency doesn't even have to be one of them (copper for example).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...

Similar threads

Replies
3
Views
2K
Replies
2
Views
2K
Replies
2
Views
3K
Replies
5
Views
3K
Replies
2
Views
1K
Replies
6
Views
3K
Replies
3
Views
5K
Replies
3
Views
2K
Back
Top