Undergrad Why is the p-adic order of zero considered infinite?

  • Thread starter Thread starter DaTario
  • Start date Start date
  • Tags Tags
    Zero
Click For Summary
The p-adic order of a positive integer n is defined as the highest power of a prime p that divides n. The p-adic order of zero is considered infinite because dividing zero by any prime p does not yield a non-zero remainder, leading to the conclusion that it can be divided an infinite number of times. This concept is linked to the p-adic absolute value, where |0|_p is defined as 0, reinforcing the idea that the p-adic order of zero is infinite. The discussion clarifies that while p-adic order typically relates to prime factorization, defining ord(0) as infinity is logical within the context of p-adic analysis. Overall, the infinite p-adic order of zero emphasizes its unique properties in number theory.
DaTario
Messages
1,097
Reaction score
46
TL;DR
Hi all, I would like to know why the p-adic order of zero, i.e., the exponent of the highest power of p (prime) that divides 0, is infinite.

best wishes
Hi All,
The p-adic order of a positive integer n is the exponent of the highest power of the prime p that divides n. I would like to know why it is commonly assumed that the p-adic order of zero is infinite.
best wishes,
DaTario
 
Last edited:
Mathematics news on Phys.org
The p-adic order and the p-adic absolute value are related by ##|x|_p=x^{-\operatorname{ord}(x)}##. Of course we want ##|0|_p=0##. The absolute value is the more important quantity.
 
Thank you, fresh 42. So it means that there is no connection with the purely "prime factorization of integers" meaning of the p-adic order. Is it correct?
 
Not really. Only the powers of a fixed prime are considered. However, it makes sense to define ##\operatorname{ord}(0)=\infty ## anyway: how often can we divide ##0## by ##p## until we get a remainder?
 
Thank you very much, you put a smile in my face with this very clear sentence. Thanks!
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 0 ·
Replies
0
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K