Parallel transport general relativity

Click For Summary

Discussion Overview

The discussion revolves around the concept of parallel transport in general relativity, particularly how it relates to tensor quantities and the implications of curved spaces. Participants explore the nature of parallel transport, its dependence on the path taken, and the relationship between local inertial frames and tensor invariance.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant describes parallel transport as moving a tensor quantity while maintaining its invariance across different reference frames, questioning how this can depend on the path taken in curved spaces.
  • Another participant challenges this description, suggesting that parallel transport involves moving a vector without turning it, using a sphere as an example to illustrate how vectors can change direction when transported along different paths.
  • A later reply provides a similar example involving the Earth's equator and North Pole, demonstrating how parallel transport can yield different results based on the path taken, emphasizing the role of geodesics.
  • Some participants discuss the definition of the curve followed during parallel transport, noting that it is characterized by the covariant derivative of the vector being zero, which implies no change along the path.
  • There is a mention of misconceptions regarding local reference frames, with one participant asserting that points "p" and "q" do not share local reference frames even if they are at rest relative to each other.

Areas of Agreement / Disagreement

Participants express differing views on the nature of parallel transport and its relationship to local reference frames. There is no consensus on the accurate description of parallel transport or how local frames interact with the concept.

Contextual Notes

Some participants highlight potential misunderstandings regarding the relationship between parallel transport and local reference frames, indicating that the discussion may involve unresolved assumptions about these concepts.

Who May Find This Useful

This discussion may be of interest to those studying general relativity, differential geometry, or anyone seeking to understand the complexities of tensor transport in curved spaces.

  • #61
Jufa said:
If we state ##e_\theta=(1, 0) ## and ##e_\phi =(0, 1) ##

If ##e_\phi## is supposed to be a unit vector in the ##\phi## direction, then it is not ##(0, 1)##, it is ##(0, 1 / \sin \theta)##.
 
Physics news on Phys.org
  • #62
PeterDonis said:
If ##e_\phi## is supposed to be a unit vector in the ##\phi## direction, then it is not ##(0, 1)##, it is ##(0, 1 / \sin \theta)##.
I don't think it is a needed that the vectors are unitary. Indeed the only effect of choosing a non Unit vector in the basis is a change in the metric.
 
  • #63
Jufa said:
Actually we have ##e_\theta=(1, 0) ## and ##e_\phi =(0, 1) ## and the problem you point out is solved but the inconsestency remains.

You might be confusing yourself by switching equations too many times. Here's how I would work this problem using Equation 4.17 in the reference you gave earlier.

Equation 4.17 reads

$$
\frac{d A^\mu}{d \lambda} + \Gamma^\mu{}_{\nu \alpha} A^\alpha \frac{d x^\nu}{d \lambda} = 0
$$

Here the vector ##A^\mu## is ##e_\phi = (0, 1 / \sin \theta)##. Since our curve is the equator, we have ##\theta = \theta_0 = \pi / 2## all along the curve, and therefore ##d A^\mu / d \lambda = 0##. So we expect to find ##\Gamma^\mu{}_{\nu \alpha} A^\alpha \frac{d x^\nu}{d \lambda} = 0## for all possible index combinations.

Since ##A^1 = 0## (we have ##1## as the ##\theta## component index and ##2## as the ##\phi## component index), only ##\alpha = 2## needs to be considered. So the only connection coefficients that need to be considered are ##\Gamma^1{}_{22} = - \sin \theta \cos \theta## and ##\Gamma^2{}_{12} = \cot \theta##. Both of these vanish for ##\theta = \theta_0 = \pi / 2##. So Equation 4.17 is indeed satisfied for transporting ##e_\phi## along the equator.

Note that for other values of ##\theta## besides ##\pi / 2##, Equation 4.17 will not be satisfied for transporting ##e_\phi## along a curve of constant ##\theta##. That is because such curves are not geodesics for ##\theta \neq \pi / 2##.
 
  • #64
Jufa said:
As Romsofia suggested I tried to picture a simple example to see what's going on and I encounter something that I don't understand. Put this example: The surface of a sphere considereing the basis vectors as ## \vec{e_\theta} = \big(cos(\theta)cos(\phi), cos(\theta)sin(\phi), -sin(\theta)\big)## and ## \vec{e_\phi} = \big(-sin(\theta)sin(\phi), sin(\theta)cos(\phi), cos(\theta)\big)##.
The metric of this space is defined such that ##g_{11} = 1## and ##g_{22}=sin^2(\theta)## being zero the rest of the metric components and with the association ##\theta \rightarrow 1## and ##\phi\rightarrow 2##.

Let as now parallel transport the vector ##\vec{e_\phi}## from one point in the equator to another point on the equator, following the geodesic ##x^1=\theta_0## and ##x^2= \phi ##, being ##\theta_0## constant. The parallel transported vector, which we call ##\vec{v}##, must fulfill at every point the following:

$$\Big(\nabla_j \vec{v}\Big)^k \frac{dx^j}{d\phi} = 0 $$

We know that the solution is ##\vec{v} = \vec{e_\phi}## but if we insert this solution we get the following:

$$\Big(\nabla_j \vec{e_\phi}\Big)^k \frac{dx^j}{d\phi} = \Gamma^k_{j2} \frac{dx^j}{d\phi}= \Gamma^k_{22} $$

Where we have used that ##\frac{dx^j}{d\phi}=\delta^{j}_2##.
If we take k=1 we get:

$$\Big(\nabla_j \vec{v}\Big)^1 \frac{dx^j}{d\phi} = \Gamma^1_{22} = -\frac{1}{tg(\theta_0)}$$
which in general is different from zero.

Where am I wrong?
Oh. So Peter I think the result here is correct. I just needed to remember that ##\theta_0 =\pi/2##. Many thanks!
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 19 ·
Replies
19
Views
1K
  • · Replies 24 ·
Replies
24
Views
2K
Replies
11
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K