Parameterization of a torus problem

  • Thread starter Thread starter mcafej
  • Start date Start date
  • Tags Tags
    Torus
Click For Summary
The discussion focuses on the parameterization of a torus defined by specific equations for x, y, and z. For part (a), the radius of the central circle of the tube is determined to be 3, while the radius of the tube itself is found to be 1. In part (b), the rate of coverage is computed using the magnitude of the cross product of the velocity vectors, leading to a simplification for the area calculation. The area of the torus is confirmed to be 12π², aligning with the known formula for the surface area of a torus. Overall, the participants successfully navigate the complexities of the problem, particularly in deriving the radii and calculating the area.
mcafej
Messages
15
Reaction score
0

Homework Statement


Consider the parametrization of the torus given by:
x = x(s, t) = (3 + cos(s)) cos(t)
y = y(s, t) = (3 + cos(s)) sin(t)
z = z(s, t) = sin(s),
for 0 ≤ s, t ≤ 2π.

(a). What is the radius of the circle that runs though the center of the tube, and what is
the radius of the tube, measured from the central circle?
(b). Compute the rate of coverage of the torus by the parametrization. (Look for simplifi-
cations using trig identitites.)
(c). The parametrization is 1-1. Compute the area of the torus.

Homework Equations



Rate of coverage
|<∂x/∂s, ∂y/∂s, ∂z/∂s>x<∂x/∂t, ∂y/∂t, ∂z/∂t>|
(if this is hard to read, its basically the magnitude of the cross product of the velocity vectors)

Given that the transformation is 1-1 on a finite region D, the area on the s-t plane covered by the parameterized surface is

∫∫|<∂x/∂s, ∂y/∂s, ∂z/∂s>x<∂x/∂t, ∂y/∂t, ∂z/∂t>| dsdt

(in other words, the area covered by the torus is going to be the double integral of the rate of coverage with respect to s and t)

The Attempt at a Solution



Part b and c are pretty straight forward. For part B, I use the equation he gave us, for rate of coverage (listed above). Finding the partials, the cross product and the magnitude is pretty straight forward (although they are very confusing). I ended up with

Cross product of the velocity vectors is
<-cos(s)cos(t)(3+cos(s)), -sin(t)cos(s)(3+cos(s)), (-3-cos(s))(sin(s)cos2(t)+sin2(t)cos(s)>

Then I need to take the magnitude of that, but I can't figure out how to simplify it using trig identities (taking the magnitude of that mess would be a nightmare, but I may need to just sit down and do it, is there any easier way?). The last one looks like I should be able to simplify more cause I have the sin2 and cos2, but I can't figure out how to because they are both attached to a sin(s) and cos(s).

For part c, I just take my answer from part b and plug it into the integral. The hard part about this question is the bounds of the integral. I know that 0≤s and t≤2π, but I have know idea what the upper bound for s should be and what the lower bound for t should be.

As for part a, I really have no clue how to even get started on this one. I have a feeling it has something to do with the 3 in the equation, but I really don't know. I'm not sure which of s or t relates to the circle that runs through the center of the tube, and which is related to the radius of the tube itself. Sorry if this is a little confusing. If you have any questions about anything, just let me know.
 
Physics news on Phys.org
mcafej said:

Homework Statement


Consider the parametrization of the torus given by:
x = x(s, t) = (3 + cos(s)) cos(t)
y = y(s, t) = (3 + cos(s)) sin(t)
z = z(s, t) = sin(s),
for 0 ≤ s, t ≤ 2π.

(a). What is the radius of the circle that runs though the center of the tube, and what is
the radius of the tube, measured from the central circle?
As for part a, I really have no clue how to even get started on this one. I have a feeling it has something to do with the 3 in the equation, but I really don't know. I'm not sure which of s or t relates to the circle that runs through the center of the tube, and which is related to the radius of the tube itself. Sorry if this is a little confusing. If you have any questions about anything, just let me know.

Look at ##x^2+y^2## and see how it varies as a function of ##s## and a function of ##t## to get an idea about the two radii.
 
Ok, so I just looked up the formula for the radii of a torus, and I just explained how I got 1 as the radius of the circle of the tube, and 3 as the radius of the torus itself. As for the Area of coverage, I was able to simplify it down and for the Area you end up just getting the double integral from 0 to 2pi (for both s and t) of 3+cost. I ended up getting 12pi^2 for the integral, which is the surface area of the torus (which is correct because the surface area of a torus and it is 4rRpi^2, with r being the radius of the tube and R being the radius of the torus, so 4*3*1*pi^2=12pi^2 as needed). The response before was helpful about deriving the radii of the torus, thank you.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
1K
Replies
4
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K