sikrut
- 48
- 1
[a]Give a parametric equation for the line tangent to this curve at t = \frac{pi}{4}.
\vec{r(t)} <e^tcost, e^tsint>
Give the equation for this same tangent line in the form ax + by = c
My attempt
\vec{r(\frac{pi}{4})} = <e^\frac{pi}{4}cos\frac{pi}{4}, e^\frac{pi}{4}sin\frac{pi}{4}
= e^\frac{pi}{4}<\frac{1}{2}, \frac{1}{2}>
\vec {r'(t)} = e^t<cost - sint, cost + sint>
\vec {r'(\frac{pi}{4})} = e^\frac{pi}{4}<cos\frac{pi}{4} - sin\frac{pi}{4}, cos\frac{pi}{4} + sin\frac{pi}{4}>
\vec {r'(\frac{pi}{4})} = e^\frac{pi}{4}<0,1>
x = \frac{e^\frac{pi}{4}}{2}
y = \frac{e^\frac{pi}{4}}{2} + e^\frac{pi}{4}tMy answers aren't right. I suck.
Couldn't even solve for
\vec{r(t)} <e^tcost, e^tsint>
Give the equation for this same tangent line in the form ax + by = c
My attempt
\vec{r(\frac{pi}{4})} = <e^\frac{pi}{4}cos\frac{pi}{4}, e^\frac{pi}{4}sin\frac{pi}{4}
= e^\frac{pi}{4}<\frac{1}{2}, \frac{1}{2}>
\vec {r'(t)} = e^t<cost - sint, cost + sint>
\vec {r'(\frac{pi}{4})} = e^\frac{pi}{4}<cos\frac{pi}{4} - sin\frac{pi}{4}, cos\frac{pi}{4} + sin\frac{pi}{4}>
\vec {r'(\frac{pi}{4})} = e^\frac{pi}{4}<0,1>
x = \frac{e^\frac{pi}{4}}{2}
y = \frac{e^\frac{pi}{4}}{2} + e^\frac{pi}{4}tMy answers aren't right. I suck.
Couldn't even solve for
Last edited: