1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Partial derivatives and complex numbers

  1. Feb 1, 2015 #1
    1. The problem statement, all variables and given/known data
    show that the following functions are differentiable everywhere and then also find f'(z) and f''(z).
    (a) f(z) = iz + 2

    so f(z) = ix -y +2


    then u(x,y) = 2-y, v(x,y) = x
    2. Relevant equations
    z=x+iy
    z=u(x,y) +iv(x,y)
    Cauchy-Riemann conditions says is differentiable everywhere if :
    ∂u/∂x = ∂v/∂y and ∂u/∂y = -∂v/∂x

    3. The attempt at a solution
    so using the Cauchy-Riemann conditions i find that the function is differentiable everywhere. the part im stuck on is finding the first derivative.
    f'(z) should be in the form of two partial derivatives right? because of the way the variables are set up.
    so...
    f'(z) =
    ∂z/∂x = ∂z/∂u(∂u/∂x) + ∂z/∂v(∂v/∂x)
    ∂z/∂y = ∂z/∂u/(∂u/∂y) + ∂z/∂v(∂v/∂y)

    but where do i go from here? i can solve partials of u with respect to x or y but i dont know how to solve the partials of z with respect to u.

    thank you!!!
     
  2. jcsd
  3. Feb 1, 2015 #2

    Mark44

    Staff: Mentor

    Isn't f just a linear function of z?
     
  4. Feb 2, 2015 #3
    The derivative of the function of z does not consist of partial derivatives, you are looking for df/dz. The process to do this is to use limits as both Δx and Δy approach zero, where the numerator is analogous to the definition of the single variable derivative is divided by Δx + iΔy, analogous to h in single variable differentiation

    [itex]\frac{d}{dz} = \lim_{Δx,Δy\to0} \frac{u(x+Δx,y+Δy) - u(x,y) + iv(x+Δx,y+Δy)) - iv(x,y)}{Δx+iΔy} [/itex]

    If you set Δy = 0 first, and let Δx → 0, then
    [itex]\frac{df}{dz} = \frac{∂u(x,y)}{∂x} + i\frac{∂v(x,y)}{∂x} . . . (1) [/itex]

    If you set Δx = 0 first, and let Δy → 0, then
    [itex]\frac{df}{dz} = -i\frac{∂u(x,y)}{∂y} + \frac{∂v(x,y)}{∂y} . . . (2) [/itex]

    Both of these are ways to calculate df/dz, IF the real part of (1) is equivalent to the real part of (2), and the imaginary part of (1) is equivalent to the imaginary part of (2). This is where the Cauchy-Riemman condition comes from.
    If we equate the real parts of equations (1) and (2), we have:
    [itex] \frac{∂u(x,y)}{∂x} = \frac{∂v(x,y)}{∂y} [/itex]
    If we equate the imaginary parts of equations (1) and (2), we have:
    [itex] \frac{∂v(x,y)}{∂x} = -\frac{∂u(x,y)}{∂y} [/itex]
     
    Last edited: Feb 2, 2015
  5. Feb 2, 2015 #4

    Mark44

    Staff: Mentor

    d/dz is an operator, not a number or function. On the left side you should have ##\frac{df}{dz}## or something similar, indicating that you are taking the derivative of f with respect to z.
     
  6. Feb 2, 2015 #5
    You're right, I entirely forgot the df on the first part.

    It won't let me edit the post so just keep that in mind :]
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Partial derivatives and complex numbers
Loading...