MHB Particles rotating about each other with uniform angular speed

AI Thread Summary
Two particles of mass m and M rotate around a common center of gravity under an attractive force F, maintaining a separation R and an angular velocity ω. The correct equations for the forces acting on each mass are F = mω²r₁ and F = Mω²r₂, where r₁ and r₂ are the distances from each mass to the center of rotation. The total separation R is the sum of these distances, R = r₁ + r₂. The relationship between R, F, and ω is established as R = (F/ω²)(1/m + 1/M). The discussion emphasizes the necessity of equal angular velocities for the system to maintain a constant separation.
Fantini
Gold Member
MHB
Messages
267
Reaction score
0
Here's the problem:

Two particles of mass $m$ and $M$ undergo uniform circular motion about each other at a separation $R$ under the influence of an attractive force $F$. The angular velocity is $\omega$ radians per second. Show that

$$R = \frac{F}{\omega^2} \left( \frac{1}{m} + \frac{1}{M} \right).$$

I don't understand what is meant by undergo circular motion about each other.
 
Mathematics news on Phys.org
Fantini said:
Here's the problem:

Two particles of mass $m$ and $M$ undergo uniform circular motion about each other at a separation $R$ under the influence of an attractive force $F$. The angular velocity is $\omega$ radians per second. Show that

$$R = \frac{F}{\omega^2} \left( \frac{1}{m} + \frac{1}{M} \right).$$

I don't understand what is meant by undergo circular motion about each other.

Hi Fantini,

For instance 2 bodies attracted by gravity do that.
In that case they both make a circular movement around the common center of gravity.
 
Thank you, ILS. This confirms my initial sketch of the situation was correct. A colleague managed to solve it during a brainstorm today. Here's the solution.

For each body we can equate the resultant force to mass times the acceleration it feels, therefore we have the set of equations

$$F = \frac{m \omega^2 R}{2}, \text{ and } F = \frac{M \omega^2 R}{2}.$$

Isolating $R$ in both gives

$$R = \frac{2F}{m \omega^2} \text{ and } R = \frac{2F}{M \omega^2}.$$

Adding them results in

$$2R = \frac{2F}{\omega^2} \left( \frac{1}{m} + \frac{1}{M} \right)$$

and we have

$$R = \frac{F}{\omega^2} \left( \frac{1}{m} + \frac{1}{M} \right).$$
 
Fantini said:
Thank you, ILS. This confirms my initial sketch of the situation was correct. A colleague managed to solve it during a brainstorm today. Here's the solution.

For each body we can equate the resultant force to mass times the acceleration it feels, therefore we have the set of equations

$$F = \frac{m \omega^2 R}{2}, \text{ and } F = \frac{M \omega^2 R}{2}.$$

I believe... that is not correct.
It seems your colleague is assuming that the common point of rotation is halfway the 2 masses, but as I see it, there is nothing that suggests that.
It appears to be accidental that the right answer came out.

As I see it, mass $m$ has a distance of $r_1$ to the common point of rotation.
And mass $M$ has a distance of $r_2$ to the common point of rotation.

I believe that the proper set of equations is:
\begin{cases}
F=m\omega^2 r_1 \\
F=M\omega^2 r_2 \\
R=r_1+r_2
\end{cases}
 
I see. So if mass $m$ is closer to the center of rotation than mass $M$ then it should have a smaller speed because it covers less distance, while mass $M$ has greater speed because it covers greater distance.

Either way, they are always at an angle of $\pi$ with each other such that $R$ is constant, correct?
 
Last edited:
Fantini said:
I see. So if mass $m$ is closer to the center of rotation than mass $M$ then it should have a smaller speed because it covers less distance, while mass $M$ has greater speed because it covers greater distance.

Either way, they are always at an angle of $pi$ with each other such that $R$ is constant, correct?

Exactly.

The force $F$ is the centripetal force that dictates the relation between the $\omega$'s and the respective radiuses.
The separation $R$ can only be constant if the $\omega$'s are the same, meaning the angle is a constant $\pi$.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
2
Views
3K
Replies
17
Views
423
Replies
11
Views
1K
Replies
4
Views
2K
Replies
11
Views
2K
Replies
6
Views
4K
Back
Top