Particles rotating about each other with uniform angular speed

Click For Summary
SUMMARY

Two particles of mass $m$ and $M$ undergo uniform circular motion about each other at a separation $R$ under an attractive force $F$ with an angular velocity of $\omega$ radians per second. The relationship governing their motion is defined by the equation $$R = \frac{F}{\omega^2} \left( \frac{1}{m} + \frac{1}{M} \right).$$ This equation is derived by equating the centripetal forces acting on each mass and considering their distances from the center of rotation. The discussion clarifies that the angular velocities of both masses must be equal for the separation $R$ to remain constant.

PREREQUISITES
  • Understanding of uniform circular motion
  • Knowledge of centripetal force and its relation to mass and acceleration
  • Familiarity with angular velocity and its units
  • Basic algebra for manipulating equations
NEXT STEPS
  • Study the derivation of centripetal force in circular motion
  • Explore gravitational interactions between two bodies in orbital mechanics
  • Learn about angular momentum and its conservation in multi-body systems
  • Investigate the effects of varying mass ratios on orbital dynamics
USEFUL FOR

Students and professionals in physics, particularly those focusing on mechanics and dynamics, as well as anyone interested in understanding the principles of circular motion and gravitational interactions between bodies.

Fantini
Gold Member
MHB
Messages
267
Reaction score
0
Here's the problem:

Two particles of mass $m$ and $M$ undergo uniform circular motion about each other at a separation $R$ under the influence of an attractive force $F$. The angular velocity is $\omega$ radians per second. Show that

$$R = \frac{F}{\omega^2} \left( \frac{1}{m} + \frac{1}{M} \right).$$

I don't understand what is meant by undergo circular motion about each other.
 
Mathematics news on Phys.org
Fantini said:
Here's the problem:

Two particles of mass $m$ and $M$ undergo uniform circular motion about each other at a separation $R$ under the influence of an attractive force $F$. The angular velocity is $\omega$ radians per second. Show that

$$R = \frac{F}{\omega^2} \left( \frac{1}{m} + \frac{1}{M} \right).$$

I don't understand what is meant by undergo circular motion about each other.

Hi Fantini,

For instance 2 bodies attracted by gravity do that.
In that case they both make a circular movement around the common center of gravity.
 
Thank you, ILS. This confirms my initial sketch of the situation was correct. A colleague managed to solve it during a brainstorm today. Here's the solution.

For each body we can equate the resultant force to mass times the acceleration it feels, therefore we have the set of equations

$$F = \frac{m \omega^2 R}{2}, \text{ and } F = \frac{M \omega^2 R}{2}.$$

Isolating $R$ in both gives

$$R = \frac{2F}{m \omega^2} \text{ and } R = \frac{2F}{M \omega^2}.$$

Adding them results in

$$2R = \frac{2F}{\omega^2} \left( \frac{1}{m} + \frac{1}{M} \right)$$

and we have

$$R = \frac{F}{\omega^2} \left( \frac{1}{m} + \frac{1}{M} \right).$$
 
Fantini said:
Thank you, ILS. This confirms my initial sketch of the situation was correct. A colleague managed to solve it during a brainstorm today. Here's the solution.

For each body we can equate the resultant force to mass times the acceleration it feels, therefore we have the set of equations

$$F = \frac{m \omega^2 R}{2}, \text{ and } F = \frac{M \omega^2 R}{2}.$$

I believe... that is not correct.
It seems your colleague is assuming that the common point of rotation is halfway the 2 masses, but as I see it, there is nothing that suggests that.
It appears to be accidental that the right answer came out.

As I see it, mass $m$ has a distance of $r_1$ to the common point of rotation.
And mass $M$ has a distance of $r_2$ to the common point of rotation.

I believe that the proper set of equations is:
\begin{cases}
F=m\omega^2 r_1 \\
F=M\omega^2 r_2 \\
R=r_1+r_2
\end{cases}
 
I see. So if mass $m$ is closer to the center of rotation than mass $M$ then it should have a smaller speed because it covers less distance, while mass $M$ has greater speed because it covers greater distance.

Either way, they are always at an angle of $\pi$ with each other such that $R$ is constant, correct?
 
Last edited:
Fantini said:
I see. So if mass $m$ is closer to the center of rotation than mass $M$ then it should have a smaller speed because it covers less distance, while mass $M$ has greater speed because it covers greater distance.

Either way, they are always at an angle of $pi$ with each other such that $R$ is constant, correct?

Exactly.

The force $F$ is the centripetal force that dictates the relation between the $\omega$'s and the respective radiuses.
The separation $R$ can only be constant if the $\omega$'s are the same, meaning the angle is a constant $\pi$.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 17 ·
Replies
17
Views
973
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
67
Views
4K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
335
Views
16K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
2K