Partition function of modified Ising model

Click For Summary
The discussion revolves around the partition function of a modified Ising model represented by a specific Hamiltonian. The model separates particles into categories based on their spin orientations and proximity, leading to a new Hamiltonian formulation. Constraints are established to relate the number of up and down spin particles to pairs of particles with various spin configurations. The challenge lies in evaluating the partition function, Z, as a function of the constrained variables, particularly due to the inability to factor the sum of exponentials. The participant expresses difficulty in finding a solution to compute Z under these constraints.
LCSphysicist
Messages
644
Reaction score
162
Homework Statement
.
Relevant Equations
.
$$H = - J ( \sum_{i = odd}) \sigma_i \sigma_{i+1} - \mu H ( \sum_{i} \sigma_i ) $$
So basically, my idea was to separate the particles in this way::
##N_{\uparrow}## is the number of up spin particles

##N_{\downarrow}## "" down spin particles

##N_1## is the number of pairs of particles close to each other with spin up

##N_2## "" with spin down

##N_3## "" with spin antiparallel
Therefore
$$\hat{H} = - J (N_1 + N_2 - N_3 ) - \mu H (N_{\uparrow} - N_{\downarrow})$$
Subject to the following constraints:
$$\frac{N}{2} = N_1 + N_2 + N_3$$

$$N_{\uparrow} = 2N_1 + N_3$$

$$N_{\downarrow} = 2N_2 + N_3$$

$$N = N_{\uparrow} + N_{\downarrow}$$
But, even make this clarifications, i can't see how to find the partition! If we substitute the above expressions on ##\sum e^{-\hat{H}/kT}##, we will find Z as a function of, for example, ##Z=Z(N_{\uparrow},N_3)##. But i don't know how to evaluate such a sum! I mean, it can't factoriz in the sum of two expoents, because both arguments are constrained! (We can't have ##N_3 = N/2, N_{\uparrow} = 0##, for example)
 
Last edited:
Physics news on Phys.org
Done!
 
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
Replies
7
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K