Undergrad Pauli Spin Operator Eigenvalues For Two Electron System

Click For Summary
The discussion revolves around the eigenvalues of the Pauli spin operator for a two-electron system, specifically questioning the answer key that lists the eigenvalues as 4s(s+1) instead of the expected s(s+1) based on Sakurai's principles. Participants express confusion over the discrepancy and suggest that it may be an error. A reference to the Hamiltonian describing the interaction of two spins is provided, along with a request for clarification on the eigenenergies and eigenfunctions of the system under a magnetic field. The final clarification indicates that the correct eigenvalue for the spin operator should be derived from the relationship between the total spin operator and the Pauli matrices. The conversation highlights the importance of accurate references in quantum mechanics discussions.
xdrgnh
Messages
415
Reaction score
0
I'm studying for a qualifying exam and I see something very strange in the answer key to one of the problems from a past qualifying exam. It appears the sigma^2 for a two electron system has eigenvalues according to the picture below of 4s(s+1) while from my understand of Sakurai it should have eigenvalue of s(s+1). Can anyone shed some light on this, I suspect it is an error.
Screen%20Shot%202017-08-26%20at%2011.01.47%20PM.png
 
Physics news on Phys.org
Your image didn't appear to come through. It might be better to link to a reference if you have one.
 
PeterDonis said:
Your image didn't appear to come through. It might be better to link to a reference if you have one.
Yes I see. I have a link to a google drive.

Anyway I can just upload a photo on my desktop?
https://drive.google.com/drive/folders/0B9_oicNQsA7bSFFxT1czal9hclU

if you have access to the google drive it would be under 2009 part 2, the quantum question 2.
 
xdrgnh said:
here is the image.

This doesn't give enough context. Do you have an actual reference?
 
PeterDonis said:
This doesn't give enough context. Do you have an actual reference?
Consider two s = 1/2 spins. Their interaction with each other is described by the Hamiltonian: Hex = A~σ1 · ~σ2 , where A is a positive constant, and ~σ1 and ~σ2 are vectors with components given by the Pauli matrices. In addition, a magnetic field B~ is applied to spin #1 only, so that the Zeeman Hamiltonian of the system is HZ = gµBB~ · ~σ1 . Here µB is the Bohr magneton and g is the g-factor. This is the problem.
 
(a) Assume that a static field is applied, B~ = Bzˆ where ˆz is the unit vector along the z-axis. Find the eigenenergies of the system. Plot the spectrum as a function of B for fixed A, labeling all relevant features. Also find the eigenfunctions for B = 0 and in the limit of infinitely large B. (40 points) this is this is the question they are referring to. Also here is the image of the solution which I think has an error in it.

http://imgur.com/N4AxroC
 
xdrgnh said:
It appears the sigma^2 for a two electron system has eigenvalues according to the picture below of 4s(s+1) while from my understand of Sakurai it should have eigenvalue of s(s+1). Can anyone shed some light on this, I suspect it is an error.
It's ##\hat S^2## whose eigenvalue is ##\hbar^2 s(s+1)##. To get the eigenvalue of ##\hat \sigma^2##, use ##\hat {\mathbf S} = \frac{1}{2} \hbar \hat {\mathbf \sigma}##.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
886
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 0 ·
Replies
0
Views
466
  • · Replies 18 ·
Replies
18
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K