Percentage change in the density of a gas

AI Thread Summary
The discussion centers on calculating the percentage change in gas density when moving it to another vessel. The initial approach involved using Boyle's Law and the relationship between volume and temperature, but confusion arose regarding the temperature change after the gas was transferred. Participants clarified that if the gas is heated after being moved to a vessel of fixed volume, the density will decrease due to expansion. The correct calculation for density change should consider the final density minus the initial density. Additionally, there were notes on proper unit notation and definitions.
patric44
Messages
308
Reaction score
40
Homework Statement
a gas was at a specific vessel at T=300K, P=110KPa, when moved to another different vessel at the same temperature its pressure becomes 105KPa, if this vessel was heated to 330K find the percentage change in the density?
Relevant Equations
P1V1=P2V2, V1/T1=V2/T2
Hi all, in this question i was asked to find the percentage change in the density, my approach was as following, first i find the change in volume due to putting the gas into the other vessel as:
$$
P_{1}V_{1}=P_{2}V_{2}\;\; → \;\;V_{2}=\frac{P_{1}}{P_{2}}V_{1}
$$
now i use
$$
V_{1}/T_{1}=V_{2}/T_{2}\;\; → \;\;\frac{P_{1}}{P_{2}}V_{1}/T_{1}=V_{2}/T_{2}
$$
and using V=m/rho leads to, with m constant, i arrive at
$$
\frac{\rho_{o}-\rho_{2}}{\rho_{o}}=\frac{1}{\frac{T_{2}P_{1}}{T_{1}P_{2}}}-1=-13.22%
$$
the answer has the choices [-5.55% , -4.55% , 4%, 5%]
what I am doing wrong, can any one help
 
Physics news on Phys.org
Hi. The question says the gas is moved to "another different vessel at the same temperature". This is unclear.

It sounds like the temperature immediately after the move is still 300K. So the gas is heated from 300K to 330K after the move.

Will increasing the temperature of the gas in the 2nd vessel affect the gas's density?
 
Steve4Physics said:
Hi. The question says the gas is moved to "another different vessel at the same temperature". This is unclear.

It sounds like the temperature immediately after the move is still 300K. So the gas is heated from 300K to 330K after the move.

Will increasing the temperature of the gas in the 2nd vessel affect the gas's density?
yes it was 300K then heated to 330K, yes I guess, since the increase in temperature will make the gas expand and hence lower its density
 
patric44 said:
yes it was 300K then heated to 330K, yes I guess, since the increase in temperature will make the gas expand and hence lower its density
The vessel itself doesn't expand (or its expansion is negligible).

Will increasing the temperature change the gas's volume?
 
wait a minute, the other container has a fixed volume hence the gas has no place to expand when heated! what was I thinking :woot:, so the change in density only comes from the movment in the other vessel which I can determine by Boyle's law, thanks so much its clear now
 
  • Like
Likes Steve4Physics
patric44 said:
$$\frac{\rho_{o}-\rho_{2}}{\rho_{o}}=..$$
By the way, a 'change' is [final value]- [initial value]. So the change in density is ##\rho_{final} - \rho_{initial}##, not the other way round.

Also, the symbol for 'kilo' is lower case 'k' (e.g. 110kPa).

(For information, where a unit is named after someone, the full unit name is given in lower case and the (first letter of) the symbol is given in upper case. E.g. K, kelvin; Hz, hertz; and you can amuse yourself by thinking of others!)
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top