Perform suitable gauge transformations

Click For Summary

Homework Help Overview

The discussion revolves around gauge transformations in the context of electromagnetic potentials, specifically focusing on the Lorenz gauge. Participants are exploring the relationships between the scalar potential \(\Phi\) and the vector potential \(\vec{A}\), as well as the implications of gauge choices on these potentials.

Discussion Character

  • Exploratory, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • Participants are attempting to derive expressions for the potentials based on gauge transformations and are questioning the correctness of their implications. They discuss the relationship between the scalar potential and the gauge function \(\chi\), as well as the implications of the Lorenz gauge condition.

Discussion Status

The discussion is active, with participants providing feedback on each other's work. Some participants express agreement with the results derived for \(\chi\), while others note that the results for \(\vec{A}'\) and \(\chi'\) are not unique and should be explicitly stated.

Contextual Notes

There is an emphasis on the non-uniqueness of the gauge function \(\chi\), which is a point of consideration in the discussion. Participants are also referring to hints provided in the original problem statement, indicating that additional context may be influencing their reasoning.

LeoJakob
Messages
24
Reaction score
2
Homework Statement
Let the electromagnetic potentials be given by
$$
\Phi(\vec{r}, t)=-(\vec{a} \cdot \vec{r}) t, \quad \vec{A}(\vec{r}, t)=-\frac{\vec{a} r^{2}}{4 c^{2}}, \quad \vec{a}=\text { const. }
$$
Perform suitable gauge transformations
$$
\begin{array}{l}
\vec{A}(\vec{r}, t) \longrightarrow \vec{A}^{\prime}(\vec{r}, t)=\vec{A}(\vec{r}, t)+\vec{\nabla} \chi(\vec{r}, t), \\
\Phi(\vec{r}, t) \longrightarrow \Phi^{\prime}(\vec{r}, t)=\Phi(\vec{r}, t)-\frac{\partial \chi(\vec{r}, t)}{\partial t}
\end{array}
$$
so that the potentials comply with the respective gauge condition:

$$(i) \Phi^{\prime}=0 $$

$$(ii) \text{Lorenz gauge: } \vec{\nabla} \cdot \vec{A}^{\prime}+\frac{1}{c^{2}} \frac{\partial \Phi^{\prime}}{\partial t}=0 $$

Hint: To solve the differential equations for the gauge function ## \chi(\vec{r}, t) ##, use that ## \square\left[(\vec{a} \cdot \vec{r})(c t)^{2}\right]=-2(\vec{a} \cdot \vec{r}) ##.


Verify your solution.
Relevant Equations
$$\vec{B}(\vec{r}, t) = \vec{\nabla} \times \vec{A}(\vec{r}, t), \quad \vec{E}(\vec{r}, t) = -\dot{\vec{A}}(\vec{r}, t) - \vec{\nabla} \Phi(\vec{r}, t), \\
\Delta \Phi + \frac{\partial}{\partial t}(\vec{\nabla} \cdot \vec{A}) = -\frac{\rho}{\varepsilon_{0}}, \quad \left(\Delta - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \vec{A} - \vec{\nabla}\left(\vec{\nabla} \cdot \vec{A} + \frac{1}{c^{2}} \dot{\Phi}\right) = -\mu_{0} \vec{j}, \\
\square \equiv \Delta - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}
$$
Hello, here is my solution attempt:

(i)

$$ \begin{aligned} 0 & =\Phi^{\prime}=\Phi-\frac{\partial \chi}{\partial t} \Rightarrow \Phi=\frac{\partial \chi}{\partial t} \\ & \Rightarrow \int \Phi dt=\chi \\ & \Rightarrow \chi=\int \limits_{0}^{t}-(\vec{a} \cdot \vec{r}) t^{\prime} d t=-\frac{1}{2}(\vec{a} \cdot \vec{r}) t^{2}\end{aligned} $$

(ii)

$$ \begin{align*}
&\vec{\nabla} \cdot \vec{A}^{\prime}+\frac{1}{c^{2}} \frac{\partial \phi^{\prime}}{\partial t}=0 \\
&\Leftrightarrow \vec{\nabla} \cdot \vec{A}^{\prime}=-\frac{1}{c^{2}} \frac{\partial \Phi^{\prime}}{\partial t} \text{(I) }\\
&\vec{\nabla} \cdot \vec{A}^{\prime}=\vec{\nabla} \cdot(\vec{A}+\vec{\nabla} \chi)=\vec{\nabla} \cdot \vec{A}+\Delta \chi \text{(II) }\\
&\frac{\partial \Phi^{\prime}}{\partial t}=\dot{\Phi}-\ddot{\chi}=\frac{\partial}{\partial t}(\Phi-\dot{\chi}) \text{(III) }\\
&=-\vec{a} \cdot \vec{r}-\frac{\partial^2 \chi}{\partial t^2} \text{ with } \dot{\Phi}=\frac{\partial}{\partial t}(-\vec{a} \cdot \vec{r} t)=-\vec{a} \cdot \vec{r} \\
&\vec{\nabla} \cdot \vec{A}=-\frac{1}{4 c^{2}}\left(\begin{array}{c}
\partial_{x} \\
\partial_{y} \\
\partial_{z}
\end{array}\right) \cdot\left(\begin{array}{cc}
a_{1} r^{2} \\
a_{2} r^{2} \\
a_{3} r^{2}
\end{array}\right) \\
&=-\frac{1}{4 c^{2}} \cdot 2(a_{1} \chi+a_{2} y+a_{3} z) \\
&=-\frac{1}{2 c^{2}} \vec{a} \cdot \vec{r}=\frac{1}{2 c^{2}} \dot{\Phi} \\
&\text{(I) } \frac{1}{2 c^{2}}A\dot{\Phi}+\Delta \chi=-\frac{1}{c^{2}}(\dot{\Phi}-\ddot{\chi}) \\
&\stackrel{\cdot c^2}{\Leftrightarrow} \frac{3}{2} \dot{\Phi}+c^{2} \Delta \chi-\ddot{\chi}=0 \\
\end{align*} $$

Can somebody help me with the next step?
 
Physics news on Phys.org
LeoJakob said:
$$ \frac{3}{2} \dot{\Phi}+c^{2} \Delta \chi-\ddot{\chi}=0 $$
This may be written $$ \Box \chi = -\frac{3}{2c^2} \dot{\Phi}$$
Use ##\dot{\Phi} = -\vec a \cdot \vec r## and the hint given in the problem statement.
 
TSny said:
This may be written $$ \Box \chi = -\frac{3}{2c^2} \dot{\Phi}$$
Use ##\dot{\Phi} = -\vec a \cdot \vec r## and the hint given in the problem statement.
Thank you :)

$$ \begin{align}
\Delta \chi - \frac{1}{c^{2}} \ddot{\chi} &= -\frac{3}{2 c^{2}} \dot{\Phi} = -\frac{3}{2 c^{2}}(-\vec{a} \cdot \vec{r}) = \frac{3}{2 c^{2}}(\vec{a} \cdot \vec{r}) \\
\Leftrightarrow \quad \Box \chi &= -\frac{1}{c^{2}} \frac{3}{2} \dot{\Phi} = \frac{3}{2 c^{2}}(\vec{a} \cdot \vec{r}) \\
&= -\frac{1}{c^{2}} \frac{3}{2} \cdot \frac{1}{2} \Box \left[ (\vec{a} \cdot \vec{r})(c t)^{2} \right] \\
&= \Box \left[ -\frac{3}{4}(\vec{a} \cdot \vec{r}) t^{2} \right] \\
\overset{\text{Is this implication correct?}}{\Rightarrow } \chi &= -\frac{3}{4}(\vec{a} \cdot \vec{r}) t^{2}
\end{align}
$$

I have thus found a Lorenz gauge ##\chi## for the potentials ## \Phi## and ##\vec A##.
 
Last edited:
LeoJakob said:
Thank you :)

$$ \begin{align}
\Delta \chi - \frac{1}{c^{2}} \ddot{\chi} &= -\frac{3}{2 c^{2}} \dot{\Phi} = -\frac{3}{2 c^{2}}(-\vec{a} \cdot \vec{r}) = \frac{3}{2 c^{2}}(\vec{a} \cdot \vec{r}) \\
\Leftrightarrow \quad \Box \chi &= -\frac{1}{c^{2}} \frac{3}{2} \dot{\Phi} = \frac{3}{2 c^{2}}(\vec{a} \cdot \vec{r}) \\
&= -\frac{1}{c^{2}} \frac{3}{2} \cdot \frac{1}{2} \Box \left[ (\vec{a} \cdot \vec{r})(c t)^{2} \right] \\
&= \Box \left[ -\frac{3}{4}(\vec{a} \cdot \vec{r}) t^{2} \right] \\
\overset{\text{Is this implication correct?}}{\Rightarrow } \chi &= -\frac{3}{4}(\vec{a} \cdot \vec{r}) t^{2}
\end{align}
$$
Your work looks good. I agree with your result for ##\chi##. I think the problem statement wants you to write explicitly your results for ##\vec A'## and ##\chi'## for parts ##(i)## and ##(ii)##. The results are not unique since ##\chi## is not unique.
 
Last edited:
  • Like
Likes   Reactions: LeoJakob

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
Replies
7
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
3K
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
8
Views
2K
Replies
18
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
27
Views
3K