Perform suitable gauge transformations

Click For Summary
The discussion revolves around performing gauge transformations in electromagnetic potentials. The user presents a solution involving the scalar potential Φ and the gauge function χ, deriving that χ can be expressed as -3/4(⟨a⟩·⟨r⟩)t². They seek confirmation on the correctness of their implications and calculations, particularly regarding the Lorenz gauge condition. Other participants agree with the user's findings and suggest explicitly stating the results for both the transformed vector potential A' and the scalar potential χ' for clarity. The conversation emphasizes the non-uniqueness of the gauge function χ in the context of electromagnetic theory.
LeoJakob
Messages
24
Reaction score
2
Homework Statement
Let the electromagnetic potentials be given by
$$
\Phi(\vec{r}, t)=-(\vec{a} \cdot \vec{r}) t, \quad \vec{A}(\vec{r}, t)=-\frac{\vec{a} r^{2}}{4 c^{2}}, \quad \vec{a}=\text { const. }
$$
Perform suitable gauge transformations
$$
\begin{array}{l}
\vec{A}(\vec{r}, t) \longrightarrow \vec{A}^{\prime}(\vec{r}, t)=\vec{A}(\vec{r}, t)+\vec{\nabla} \chi(\vec{r}, t), \\
\Phi(\vec{r}, t) \longrightarrow \Phi^{\prime}(\vec{r}, t)=\Phi(\vec{r}, t)-\frac{\partial \chi(\vec{r}, t)}{\partial t}
\end{array}
$$
so that the potentials comply with the respective gauge condition:

$$(i) \Phi^{\prime}=0 $$

$$(ii) \text{Lorenz gauge: } \vec{\nabla} \cdot \vec{A}^{\prime}+\frac{1}{c^{2}} \frac{\partial \Phi^{\prime}}{\partial t}=0 $$

Hint: To solve the differential equations for the gauge function ## \chi(\vec{r}, t) ##, use that ## \square\left[(\vec{a} \cdot \vec{r})(c t)^{2}\right]=-2(\vec{a} \cdot \vec{r}) ##.


Verify your solution.
Relevant Equations
$$\vec{B}(\vec{r}, t) = \vec{\nabla} \times \vec{A}(\vec{r}, t), \quad \vec{E}(\vec{r}, t) = -\dot{\vec{A}}(\vec{r}, t) - \vec{\nabla} \Phi(\vec{r}, t), \\
\Delta \Phi + \frac{\partial}{\partial t}(\vec{\nabla} \cdot \vec{A}) = -\frac{\rho}{\varepsilon_{0}}, \quad \left(\Delta - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \vec{A} - \vec{\nabla}\left(\vec{\nabla} \cdot \vec{A} + \frac{1}{c^{2}} \dot{\Phi}\right) = -\mu_{0} \vec{j}, \\
\square \equiv \Delta - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}
$$
Hello, here is my solution attempt:

(i)

$$ \begin{aligned} 0 & =\Phi^{\prime}=\Phi-\frac{\partial \chi}{\partial t} \Rightarrow \Phi=\frac{\partial \chi}{\partial t} \\ & \Rightarrow \int \Phi dt=\chi \\ & \Rightarrow \chi=\int \limits_{0}^{t}-(\vec{a} \cdot \vec{r}) t^{\prime} d t=-\frac{1}{2}(\vec{a} \cdot \vec{r}) t^{2}\end{aligned} $$

(ii)

$$ \begin{align*}
&\vec{\nabla} \cdot \vec{A}^{\prime}+\frac{1}{c^{2}} \frac{\partial \phi^{\prime}}{\partial t}=0 \\
&\Leftrightarrow \vec{\nabla} \cdot \vec{A}^{\prime}=-\frac{1}{c^{2}} \frac{\partial \Phi^{\prime}}{\partial t} \text{(I) }\\
&\vec{\nabla} \cdot \vec{A}^{\prime}=\vec{\nabla} \cdot(\vec{A}+\vec{\nabla} \chi)=\vec{\nabla} \cdot \vec{A}+\Delta \chi \text{(II) }\\
&\frac{\partial \Phi^{\prime}}{\partial t}=\dot{\Phi}-\ddot{\chi}=\frac{\partial}{\partial t}(\Phi-\dot{\chi}) \text{(III) }\\
&=-\vec{a} \cdot \vec{r}-\frac{\partial^2 \chi}{\partial t^2} \text{ with } \dot{\Phi}=\frac{\partial}{\partial t}(-\vec{a} \cdot \vec{r} t)=-\vec{a} \cdot \vec{r} \\
&\vec{\nabla} \cdot \vec{A}=-\frac{1}{4 c^{2}}\left(\begin{array}{c}
\partial_{x} \\
\partial_{y} \\
\partial_{z}
\end{array}\right) \cdot\left(\begin{array}{cc}
a_{1} r^{2} \\
a_{2} r^{2} \\
a_{3} r^{2}
\end{array}\right) \\
&=-\frac{1}{4 c^{2}} \cdot 2(a_{1} \chi+a_{2} y+a_{3} z) \\
&=-\frac{1}{2 c^{2}} \vec{a} \cdot \vec{r}=\frac{1}{2 c^{2}} \dot{\Phi} \\
&\text{(I) } \frac{1}{2 c^{2}}A\dot{\Phi}+\Delta \chi=-\frac{1}{c^{2}}(\dot{\Phi}-\ddot{\chi}) \\
&\stackrel{\cdot c^2}{\Leftrightarrow} \frac{3}{2} \dot{\Phi}+c^{2} \Delta \chi-\ddot{\chi}=0 \\
\end{align*} $$

Can somebody help me with the next step?
 
Physics news on Phys.org
LeoJakob said:
$$ \frac{3}{2} \dot{\Phi}+c^{2} \Delta \chi-\ddot{\chi}=0 $$
This may be written $$ \Box \chi = -\frac{3}{2c^2} \dot{\Phi}$$
Use ##\dot{\Phi} = -\vec a \cdot \vec r## and the hint given in the problem statement.
 
TSny said:
This may be written $$ \Box \chi = -\frac{3}{2c^2} \dot{\Phi}$$
Use ##\dot{\Phi} = -\vec a \cdot \vec r## and the hint given in the problem statement.
Thank you :)

$$ \begin{align}
\Delta \chi - \frac{1}{c^{2}} \ddot{\chi} &= -\frac{3}{2 c^{2}} \dot{\Phi} = -\frac{3}{2 c^{2}}(-\vec{a} \cdot \vec{r}) = \frac{3}{2 c^{2}}(\vec{a} \cdot \vec{r}) \\
\Leftrightarrow \quad \Box \chi &= -\frac{1}{c^{2}} \frac{3}{2} \dot{\Phi} = \frac{3}{2 c^{2}}(\vec{a} \cdot \vec{r}) \\
&= -\frac{1}{c^{2}} \frac{3}{2} \cdot \frac{1}{2} \Box \left[ (\vec{a} \cdot \vec{r})(c t)^{2} \right] \\
&= \Box \left[ -\frac{3}{4}(\vec{a} \cdot \vec{r}) t^{2} \right] \\
\overset{\text{Is this implication correct?}}{\Rightarrow } \chi &= -\frac{3}{4}(\vec{a} \cdot \vec{r}) t^{2}
\end{align}
$$

I have thus found a Lorenz gauge ##\chi## for the potentials ## \Phi## and ##\vec A##.
 
Last edited:
LeoJakob said:
Thank you :)

$$ \begin{align}
\Delta \chi - \frac{1}{c^{2}} \ddot{\chi} &= -\frac{3}{2 c^{2}} \dot{\Phi} = -\frac{3}{2 c^{2}}(-\vec{a} \cdot \vec{r}) = \frac{3}{2 c^{2}}(\vec{a} \cdot \vec{r}) \\
\Leftrightarrow \quad \Box \chi &= -\frac{1}{c^{2}} \frac{3}{2} \dot{\Phi} = \frac{3}{2 c^{2}}(\vec{a} \cdot \vec{r}) \\
&= -\frac{1}{c^{2}} \frac{3}{2} \cdot \frac{1}{2} \Box \left[ (\vec{a} \cdot \vec{r})(c t)^{2} \right] \\
&= \Box \left[ -\frac{3}{4}(\vec{a} \cdot \vec{r}) t^{2} \right] \\
\overset{\text{Is this implication correct?}}{\Rightarrow } \chi &= -\frac{3}{4}(\vec{a} \cdot \vec{r}) t^{2}
\end{align}
$$
Your work looks good. I agree with your result for ##\chi##. I think the problem statement wants you to write explicitly your results for ##\vec A'## and ##\chi'## for parts ##(i)## and ##(ii)##. The results are not unique since ##\chi## is not unique.
 
Last edited:
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
7
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
8
Views
2K
Replies
18
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
27
Views
3K