Perform suitable gauge transformations

Click For Summary
SUMMARY

The discussion focuses on performing gauge transformations in the context of electromagnetic potentials, specifically deriving the Lorenz gauge condition for the potentials Φ and A. The user successfully derives the expression for the scalar potential Φ and the vector potential A' using the gauge function χ, leading to the conclusion that χ can be expressed as -3/4(⟨a⟩ · ⟨r⟩)t². The final equation, Box χ = -3/2c²(⟨a⟩ · ⟨r⟩), confirms the relationship between the potentials and the gauge function.

PREREQUISITES
  • Understanding of gauge transformations in electromagnetism
  • Familiarity with the Lorenz gauge condition
  • Knowledge of vector calculus, specifically divergence and Laplacian operators
  • Basic concepts of special relativity, including the speed of light (c)
NEXT STEPS
  • Study the derivation of the Lorenz gauge condition in detail
  • Explore the implications of gauge invariance in electromagnetic theory
  • Learn about the physical significance of scalar and vector potentials in electromagnetism
  • Investigate advanced topics in electromagnetism, such as the role of gauge transformations in quantum field theory
USEFUL FOR

Physicists, electrical engineers, and students studying electromagnetism or theoretical physics who seek to deepen their understanding of gauge transformations and their applications in electromagnetic theory.

LeoJakob
Messages
24
Reaction score
2
Homework Statement
Let the electromagnetic potentials be given by
$$
\Phi(\vec{r}, t)=-(\vec{a} \cdot \vec{r}) t, \quad \vec{A}(\vec{r}, t)=-\frac{\vec{a} r^{2}}{4 c^{2}}, \quad \vec{a}=\text { const. }
$$
Perform suitable gauge transformations
$$
\begin{array}{l}
\vec{A}(\vec{r}, t) \longrightarrow \vec{A}^{\prime}(\vec{r}, t)=\vec{A}(\vec{r}, t)+\vec{\nabla} \chi(\vec{r}, t), \\
\Phi(\vec{r}, t) \longrightarrow \Phi^{\prime}(\vec{r}, t)=\Phi(\vec{r}, t)-\frac{\partial \chi(\vec{r}, t)}{\partial t}
\end{array}
$$
so that the potentials comply with the respective gauge condition:

$$(i) \Phi^{\prime}=0 $$

$$(ii) \text{Lorenz gauge: } \vec{\nabla} \cdot \vec{A}^{\prime}+\frac{1}{c^{2}} \frac{\partial \Phi^{\prime}}{\partial t}=0 $$

Hint: To solve the differential equations for the gauge function ## \chi(\vec{r}, t) ##, use that ## \square\left[(\vec{a} \cdot \vec{r})(c t)^{2}\right]=-2(\vec{a} \cdot \vec{r}) ##.


Verify your solution.
Relevant Equations
$$\vec{B}(\vec{r}, t) = \vec{\nabla} \times \vec{A}(\vec{r}, t), \quad \vec{E}(\vec{r}, t) = -\dot{\vec{A}}(\vec{r}, t) - \vec{\nabla} \Phi(\vec{r}, t), \\
\Delta \Phi + \frac{\partial}{\partial t}(\vec{\nabla} \cdot \vec{A}) = -\frac{\rho}{\varepsilon_{0}}, \quad \left(\Delta - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \vec{A} - \vec{\nabla}\left(\vec{\nabla} \cdot \vec{A} + \frac{1}{c^{2}} \dot{\Phi}\right) = -\mu_{0} \vec{j}, \\
\square \equiv \Delta - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}
$$
Hello, here is my solution attempt:

(i)

$$ \begin{aligned} 0 & =\Phi^{\prime}=\Phi-\frac{\partial \chi}{\partial t} \Rightarrow \Phi=\frac{\partial \chi}{\partial t} \\ & \Rightarrow \int \Phi dt=\chi \\ & \Rightarrow \chi=\int \limits_{0}^{t}-(\vec{a} \cdot \vec{r}) t^{\prime} d t=-\frac{1}{2}(\vec{a} \cdot \vec{r}) t^{2}\end{aligned} $$

(ii)

$$ \begin{align*}
&\vec{\nabla} \cdot \vec{A}^{\prime}+\frac{1}{c^{2}} \frac{\partial \phi^{\prime}}{\partial t}=0 \\
&\Leftrightarrow \vec{\nabla} \cdot \vec{A}^{\prime}=-\frac{1}{c^{2}} \frac{\partial \Phi^{\prime}}{\partial t} \text{(I) }\\
&\vec{\nabla} \cdot \vec{A}^{\prime}=\vec{\nabla} \cdot(\vec{A}+\vec{\nabla} \chi)=\vec{\nabla} \cdot \vec{A}+\Delta \chi \text{(II) }\\
&\frac{\partial \Phi^{\prime}}{\partial t}=\dot{\Phi}-\ddot{\chi}=\frac{\partial}{\partial t}(\Phi-\dot{\chi}) \text{(III) }\\
&=-\vec{a} \cdot \vec{r}-\frac{\partial^2 \chi}{\partial t^2} \text{ with } \dot{\Phi}=\frac{\partial}{\partial t}(-\vec{a} \cdot \vec{r} t)=-\vec{a} \cdot \vec{r} \\
&\vec{\nabla} \cdot \vec{A}=-\frac{1}{4 c^{2}}\left(\begin{array}{c}
\partial_{x} \\
\partial_{y} \\
\partial_{z}
\end{array}\right) \cdot\left(\begin{array}{cc}
a_{1} r^{2} \\
a_{2} r^{2} \\
a_{3} r^{2}
\end{array}\right) \\
&=-\frac{1}{4 c^{2}} \cdot 2(a_{1} \chi+a_{2} y+a_{3} z) \\
&=-\frac{1}{2 c^{2}} \vec{a} \cdot \vec{r}=\frac{1}{2 c^{2}} \dot{\Phi} \\
&\text{(I) } \frac{1}{2 c^{2}}A\dot{\Phi}+\Delta \chi=-\frac{1}{c^{2}}(\dot{\Phi}-\ddot{\chi}) \\
&\stackrel{\cdot c^2}{\Leftrightarrow} \frac{3}{2} \dot{\Phi}+c^{2} \Delta \chi-\ddot{\chi}=0 \\
\end{align*} $$

Can somebody help me with the next step?
 
Physics news on Phys.org
LeoJakob said:
$$ \frac{3}{2} \dot{\Phi}+c^{2} \Delta \chi-\ddot{\chi}=0 $$
This may be written $$ \Box \chi = -\frac{3}{2c^2} \dot{\Phi}$$
Use ##\dot{\Phi} = -\vec a \cdot \vec r## and the hint given in the problem statement.
 
TSny said:
This may be written $$ \Box \chi = -\frac{3}{2c^2} \dot{\Phi}$$
Use ##\dot{\Phi} = -\vec a \cdot \vec r## and the hint given in the problem statement.
Thank you :)

$$ \begin{align}
\Delta \chi - \frac{1}{c^{2}} \ddot{\chi} &= -\frac{3}{2 c^{2}} \dot{\Phi} = -\frac{3}{2 c^{2}}(-\vec{a} \cdot \vec{r}) = \frac{3}{2 c^{2}}(\vec{a} \cdot \vec{r}) \\
\Leftrightarrow \quad \Box \chi &= -\frac{1}{c^{2}} \frac{3}{2} \dot{\Phi} = \frac{3}{2 c^{2}}(\vec{a} \cdot \vec{r}) \\
&= -\frac{1}{c^{2}} \frac{3}{2} \cdot \frac{1}{2} \Box \left[ (\vec{a} \cdot \vec{r})(c t)^{2} \right] \\
&= \Box \left[ -\frac{3}{4}(\vec{a} \cdot \vec{r}) t^{2} \right] \\
\overset{\text{Is this implication correct?}}{\Rightarrow } \chi &= -\frac{3}{4}(\vec{a} \cdot \vec{r}) t^{2}
\end{align}
$$

I have thus found a Lorenz gauge ##\chi## for the potentials ## \Phi## and ##\vec A##.
 
Last edited:
LeoJakob said:
Thank you :)

$$ \begin{align}
\Delta \chi - \frac{1}{c^{2}} \ddot{\chi} &= -\frac{3}{2 c^{2}} \dot{\Phi} = -\frac{3}{2 c^{2}}(-\vec{a} \cdot \vec{r}) = \frac{3}{2 c^{2}}(\vec{a} \cdot \vec{r}) \\
\Leftrightarrow \quad \Box \chi &= -\frac{1}{c^{2}} \frac{3}{2} \dot{\Phi} = \frac{3}{2 c^{2}}(\vec{a} \cdot \vec{r}) \\
&= -\frac{1}{c^{2}} \frac{3}{2} \cdot \frac{1}{2} \Box \left[ (\vec{a} \cdot \vec{r})(c t)^{2} \right] \\
&= \Box \left[ -\frac{3}{4}(\vec{a} \cdot \vec{r}) t^{2} \right] \\
\overset{\text{Is this implication correct?}}{\Rightarrow } \chi &= -\frac{3}{4}(\vec{a} \cdot \vec{r}) t^{2}
\end{align}
$$
Your work looks good. I agree with your result for ##\chi##. I think the problem statement wants you to write explicitly your results for ##\vec A'## and ##\chi'## for parts ##(i)## and ##(ii)##. The results are not unique since ##\chi## is not unique.
 
Last edited:
  • Like
Likes   Reactions: LeoJakob

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
Replies
7
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
8
Views
2K
Replies
18
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
27
Views
3K