I wasn't sure where to post this problem, as it's physics related, but rather advanced in its math content (and it's a problem for my applied math course).(adsbygoogle = window.adsbygoogle || []).push({});

1. The problem statement, all variables and given/known data

Considering a spring-mass system (like http://www.cs.toronto.edu/~faisal/teaching/notes/csc418/faisal/img/sm1.gif" [Broken]), given that the nonlinear spring has force = qx^3, where q is the spring stiffness, what is the period of the oscillation when the mass is released from rest at x_0?

3. The attempt at a solution

The equation of motion of the system is F=ma=-qx^3, so m*((d^2)x/dt^2)+q*x^3=0. Integrating, I get the energy of the system as (1/2)*m*((dx/dt)^2)+(1/4)*q*x^4.

When released from rest at x_0, the system then has E=(1/4)*q*x_0^4. I haven't found examples of this type of problem anywhere, so any help would be greatly appreciated!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Period of nonlinear spring-mass system

**Physics Forums | Science Articles, Homework Help, Discussion**