- #1
cientifiquito
- 7
- 0
Homework Statement
Let r be a positive integer. For any number x, let
(x)r = x(x-1)(x-2)...(x-r+1)
Show that
(-1/2)r = (-1)rr!2-2r(2r take r)
Homework Equations
by "2r take r" I mean what is usually denoted by (n / r) (written like a fraction but without the bar) and is calculated as: n!/(r!(n-r)!)
The Attempt at a Solution
If I start from the definition of (x)r, plugging in -1/2, I get as far as:
(-1)r(-1/2)r(1)(1+2)(1+4)(1+6)...(1+2r-2)
i.e.,
(-1)r(-1/2)r(1)(1+2)(1+4)(1+6)...(2r - 1)
And if I start from what I'm supposed to be showing that (-1/2)r is equal to, I can get to
(-1)r(-1/2)r[(2r)!/(r!(2r-r)!)]
i.e.,
(-1)r(-1/2)r[(r+1)(r+2)...(2r)]
but obviously I'm not seeing the connection between the two