MHB Phase Line and long term behavior with initial value

Click For Summary
The differential equation y' = y^2(y-3)(y-5)^3 has equilibrium points at y = 0, y = 3, and y = 5. The phase diagram indicates that not all arrows can point up due to the odd multiplicity of the equilibria. For initial condition y(0) = 4, the behavior shows that y decreases as x increases, remaining between the equilibria of 3 and 5. As x approaches negative infinity, y approaches 5, while as x increases, y approaches 3. Therefore, the long-term behavior of the solution is that y will asymptotically approach 3.
Vanrichten
Messages
12
Reaction score
1
Ok so i have the equation y'=y^2(y-3)(y-5)^3

I found the equilibrium positions to be y=0, y=3, y=5.

For my phase diagram all the arrows are pointing up so the solutions are nodes?

The last part asks Describe the long term behavior of the solution to the above di fferential equation with initial condition y(0) = 4.

I'm not sure how to get started with this.
 
Physics news on Phys.org
You have two equilibria of odd multiplicity so you cannot have all arrows in the phase diagram pointing up. Can you identify the region in the phase space where the slope is negative?
 
you have y'= y^2(y-3)(y- 5)^3. y^2 will always be positive but, as MarkFL said,those two odd powered factors mean the product cannot always be positive. The equilibrium points are, of course, y= 0, y= 3, and y= 5. I would continue like this:
Because the "x" factor is squared, it will always be positive.
If y< 3, then y is also less than 5 so y- 3 and y- 5 are negative, odd powers are negative, and y' is the product of (+)(-)(-) which is positive.
If y< 3, then y- 3 is positive but y- 5 is still negative. Now y' is the product of (+)(-)(+) which is negative.
If y> 3, then all factors are positive so y' is the product of (+)(+)(+) which is positive.

y is decreasing for y between 3 and 5. Since 4 is between 3 and 5, y will decrease as x increases. Further, since y(x) cannot cross 3, it must approach 3 as a limit as for large x. As x decreases toward negative infinity, y(x) approaches 5.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
1K
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K