I Phase space integral in noninteracting dipole system

AI Thread Summary
The discussion centers on a system of N noninteracting electric point dipoles in an external field, focusing on the Lagrangian and Hamiltonian formulations. It raises a question about the integration of cyclic momenta conjugate to the spherical angles, specifically whether they should be included in the partition function calculation. Concerns are expressed regarding the potential divergence of the integral due to the momenta being defined over positive real values. The conversation also touches on the use of polar coordinates in both coordinate and momentum spaces to analyze the phase space. Clarification is sought on the treatment of these momenta in the context of statistical mechanics and partition functions.
raisins
Messages
3
Reaction score
1
Hi all,

Consider a system of ##N## noninteracting, identical electric point dipoles (dipole moment ##\vec{\mu}##) subjected to an external field ##\vec{E}=E\hat{z}##. The Lagrangian for this system is
$$L=T-V=\sum_{i=1}^N\left\{\frac{m\dot{\vec{r}_i}^2}{2}+\vec{\mu}_i\cdot\vec{E}\right\}=\sum_{i=1}^N\left\{\frac{m\dot{\vec{r}_i}^2}{2}+E\mu\cos\theta_i\right\}$$
and the Hamiltonian is
$$H=\sum_{i=1}^N\left\{\frac{\vec{p}_i^2}{2m}-E\mu\cos\theta_i\right\}$$
As I see it, 5 sets of generalized coordinates ##\left(\left\{\vec{r}_i\right\},\left\{\theta_i\right\},\left\{\phi_i\right\}\right)##, where ##\theta_i,\phi_i## are the usual spherical angles, are needed to describe this system. Now, the momenta conjugate to ##\theta_i,\phi_i## (call them ##p_{\theta_i},p_{\phi_i}##) are both cyclic, since ##\dot{\theta}_i,\dot{\phi}_i## appear nowhere in the Lagrangian. But do we not still have to integrate over them to find the partition function; ie.
$$Z=\frac{1}{N!}\int \prod_{i=1}^N\frac{d^3\vec{r}_id^3\vec{p}_i}{h^3}\,\frac{d\theta_idp_{\theta_i}}{h}\,\frac{d\phi_idp_{\phi_i}}{h}e^{-\beta H}$$
But ##p_{\theta_i},p_{\phi_i}\in[0,\infty)## so doesn't that integral blow up? Am I wrong in thinking ##p_{\theta_i},p_{\phi_i}## can take any real, positive value? Or, because they're cyclic, do we just omit them from the integration?

Any help would be appreciated, thank you!
 
Physics news on Phys.org
I am not familiar with momenta conjugate. Taking polar coordinate for both coordinate and momenta spaces
dv=r^2 sin^2\theta dr d\theta d\phi
dV=R^2 sin^2\Theta dR d\Theta d\Phi
where I noted small r for coordinate space and capital R for momentum space.
So in total number of states in infinitesimal phase space elements is
\frac{\prod_{i=1}^N dv_idV_i}{h^{3N}}
 
Last edited:
raisins said:
But ##p_{\theta_i},p_{\phi_i}\in[0,\infty)## s
From where this comes from?
 
Thread ''splain this hydrostatic paradox in tiny words'
This is (ostensibly) not a trick shot or video*. The scale was balanced before any blue water was added. 550mL of blue water was added to the left side. only 60mL of water needed to be added to the right side to re-balance the scale. Apparently, the scale will balance when the height of the two columns is equal. The left side of the scale only feels the weight of the column above the lower "tail" of the funnel (i.e. 60mL). So where does the weight of the remaining (550-60=) 490mL go...
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Back
Top