I Phase Speed of Wave in non-relativistic Doppler Shift Derivation

Click For Summary
In the discussion, the relationship between the frequency and wavelength of sound waves is examined, particularly in the context of a moving siren and a stationary observer. The derived formula for the observed frequency, accounting for the Doppler effect, shows that the frequency measured by the observer is affected by the speed of the source relative to the medium. The question arises about why the wavelength at the source, ##\lambda_0##, equals ##\frac{v_w}{f_0}##, despite expectations from Galilean transformation. The resolution lies in recognizing that both the observer and the emitter are at rest relative to the air, leading to the same wave speed measurement. This understanding clarifies the consistency in wave speed across different reference frames in this scenario.
unified
Messages
43
Reaction score
0
TL;DR
The phase speed of a wave in the derivation of the non-relativistic Doppler shift does not change between reference frames. Shouldn't the Galilean transformation apply?
Consider the situation where an observer at rest on the ground measures the frequency of a siren which is moving away from the observer at speed ##v_{Ex}##. Let ##v_w## be the speed of the sound wave. Let ##\lambda_0##, ##f_0##, ##\lambda_D##, and ##f_D## be the wavelengths and frequencies measured by the emitter and ground observer. Let T be the wave's period measured by the ground observer. Following the standard non-relativistic doppler shift derivation, ##f_D## = ##\frac{v_w}{\lambda_D}## = ##\frac{v_w}{\lambda_0 + v_{Ex}T}## = ##\frac{v_w}{\frac{v_w}{f_0} + \frac{v_{Ex}}{f_0}}## = ##\frac{f_0}{1 + \frac{v_{Ex}}{v_w}}##.

My question, is why is ##\lambda_0## = ##\frac{v_w}{f_0}##? If the wave speed on the ground is ##v_w##, shouldn't the wave speed as measured by the emitter be calculated using the Galilean transformation? Instead it is the same value as measured by the ground observer.
 
Last edited:
Physics news on Phys.org
To answer my own question, we are comparing the frequency measured by the ground observer -- who is at rest relative to the medium air -- with that measured by an observer moving with the siren and at rest relative to the air. Since they are both at rest relative to the air, they will measure the sound to have the same speed ##v_w##.
 
Thread 'Why higher speeds need more power if backward force is the same?'
Power = Force v Speed Power of my horse = 104kgx9.81m/s^2 x 0.732m/s = 1HP =746W Force/tension in rope stay the same if horse run at 0.73m/s or at 15m/s, so why then horse need to be more powerfull to pull at higher speed even if backward force at him(rope tension) stay the same? I understand that if I increase weight, it is hrader for horse to pull at higher speed because now is backward force increased, but don't understand why is harder to pull at higher speed if weight(backward force)...

Similar threads

Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 64 ·
3
Replies
64
Views
7K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K