- #1
curleysue
- 2
- 0
I'm sure I'm overlooking something simple here.
I am trying to understand characteristic x-rays given off during photoelectric absorption of a photon. The energy from the photon is given to an inner orbital electron and the photon no longer exists. The electron uses the energy to escape, and any remaining is converted to kinetic energy. So far so good.
An outer electron drops down to fill the hole, and emits a photon in the form of a characteristic x-ray. What happens to this photon? Does it form part of the image? My understanding was that for x-ray imaging, what gets detected are photons that pass through without any interaction, and photons which get scattered (compton scattering). I thought absorbed photons were ones that got stopped, resulting in a shadow. So what is the story with these photons, where do they fit in the picture?
Thanks
I am trying to understand characteristic x-rays given off during photoelectric absorption of a photon. The energy from the photon is given to an inner orbital electron and the photon no longer exists. The electron uses the energy to escape, and any remaining is converted to kinetic energy. So far so good.
An outer electron drops down to fill the hole, and emits a photon in the form of a characteristic x-ray. What happens to this photon? Does it form part of the image? My understanding was that for x-ray imaging, what gets detected are photons that pass through without any interaction, and photons which get scattered (compton scattering). I thought absorbed photons were ones that got stopped, resulting in a shadow. So what is the story with these photons, where do they fit in the picture?
Thanks